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| . | nt roducti on

Over the past decade object-oriented technol ogy energed as
a force for inproved software quality and productivity. Duri ng
that sanme decade, continued inprovenment in processor and nenory
price-performance increased the availability of conputers,
encouraged the depl oynent of net wor ks, and enabled the
construction of massi vel y-parall el , conmput e engi nes.
Unfortunately, nost object-oriented technology that has reached
the market assunmes that objects will be linked into sequenti al
prograns, sharing the same address space. This msmatch between
currently available object-oriented software techniques and a
growing base of nultiprocessors and conputer networks has
created an interesting area of research: concurrent and
di stributed object-oriented approaches.

This paper: 1) surveys a nunber of approaches taken by
researchers, 2) proposes a taxonony of issues in concurrent and
distributed objects, and 3) exam nes one specific issue in sone
dept h. The specific issue examned is the utility of abstract
data types, as represented by Eiffel classes, to describe an
abstract speci fication for a distributed, peer -t o- peer,
comuni cations service (the Open Systens |nterconnection (QSl),
connection-oriented, transport service®).

The earliest work on concurrent objects devel oped a class
of approaches called actor nodels. The two npst prom nent



exanpl es are Actors' and An obj ect-Based Concurrent conputational
Model 1 (ABCM1)." These nodels, evolving from work on
artificial intelligence, defi ne significant conput at i onal
el ements as objects that have their own thread of control (there
are exceptions for sone fundanental objects). The primry
target for these approaches is highly parallel, multiprocessors.
A second, distinct <class of approaches <could be called
di stributed nodels.?® %%  These nodel s assune that objects are
deployed in loosely coupled networks, possibly wth a wde
geographi c distribution. These nodels are interesting because
distribution introduces a second |evel of concerns, piled atop
t he usual problens of concurrency. A third class of approaches
can be naned ext ensi ons to exi sting obj ect-oriented
| anguages. 2”32  These approaches are worth considering because
they start with an existing nodel of sequential, object-oriented
programm ng and then extend that nodel to include concurrency
feat ures. A fourth set of approaches can be grouped together
under a category |abelled other.®*23%%  These miscellaneous
approaches are worth considering because each provides a set of
features ained at specific issues that are not addressed in
ot her approaches.

The second part of this paper proposes a taxonomy of issues
in concurrent and distributed objects. The initial split of the
t axonony separates concurrency issues from distribution issues.
Distribution inplies concurrency; thus, having considered the
problens that arise when objects execute concurrently,
i nt roduci ng di stribution | mposes an addi ti onal set of
difficulties. Quidance is available in the literature on
general issues of concurrency’ and sone researchers have proposed
a taxonony of issues for distributed conputer systens,* but we
at t enpt to provide a conprehensive discussion of bot h
concurrency and distribution issues in an object-oriented
cont ext . The major concurrency topics considered include:
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granularity of parallelism nethod of comunication; nethod of

synchroni zation; approach to atomcity; the object |ife nodel;
t he know edge sharing nodel; and the exception nodel. The mgjor
di stribution issues discussed include: nodel of cooperation;
nodel of mgration; nethod of encapsulation; neans of nam ng,
addr essi ng, and | ocating; het er ogenei ty; replication; and
security.

The third part of this paper presents a case study on a
specific issue: the utility of Eiffel classes for specifying an
abstract service across distributed objects that provide a peer-

to-peer, connection-oriented, data transport service. Two
approaches are presented, analyzed, and eval uated. The first
approach maps the natural |anguage OSI transport service

specification®*® onto abstract data types (ADIs) represented as
Eiffel deferred classes. This requires establishing a nodel for
i nteraction between users of the transport service and a service
provi der. The service provider, in an inplenentation, consists
of objects that are distributed between two nodes in a network

This creates sone interesting issues when applying Eiffel pre-
and post-assertions to specify the service provided to users.

The second approach rearranges the nodel into a nore
realistic programmer’s view that attenpts to describe the
abstract service interface as an application progranm ng
I nterface. The rear r angenent S acconpl i shed wi t hout
I ntroducing semantic changes into the OSI transport service.
The purpose of this second approach is to determne if the OS
transport service can be represented as an application
programm ng interface (API) specified in Effel. Both the ADT
and APl approaches are evaluated, and a general evaluation is
al so presented regarding the utility of Effel assertions for
speci fyi ng abstract service I nterfaces to di stri buted,
peer-to-peer, comruni cations protocols.



The paper closes with sone general conclusions about issues
of concurrency and distribution in object-oriented systens. A
list of references and related papers follows the concluding
section. Two appendi ces are provided. Appendi x A contains an
Eiffel Abstract Speci fication of IS 8072: The
Connection-oriented Transport Service. Appendi x B contains an
Eiffel Abstract Specification of an Adapted, Progranmer’s Mode
of the Connection-oriented Transport Service.

1. Concurrent and Distributed Object Mdels

A growing trend toward nultiprocessing and conputer network
depl oynent has stinulated research on issues of concurrency and
distribution. In fact, object-oriented paradigns, traditionally
synchronous and sequential in nature, nust be updated to account
for requirenents  of concurrent operation and geographic
di stribution. Although no consensus exists on the best neans to
I ncorporate concurrency and distribution into object-oriented
paradi gns, researchers have proposed a nunber of nodels. In
this section, we survey sonme of the proposed nodels. Qur survey
Is organized into four categories: 1) actor nodels, 2)
distributed nodels, 3) object-oriented |anguage extensions, and
4) ot her nodel s.

A. Actor Mbdel s

The original actor nodel was proposed by Hewitt? formalized
by Agha'®, and inplenmented as a series of actor |anguages.?3®* A
second actor nodel, An object-Based Concurrent conputationa
Mbdel 1 (ABCM 1), was devel oped by Yonezawa™ and inplenented as
An obj ect - Based Concurrent Language 1 (ABCL/1).°%°% W describe

each of these nodels, and the associated | anguages, in turn.



Actors. The Actors Model of distributed conputation, as
formalized by Agha, ains to define the mninmal set of concepts
necessary for distributed conmputation in massively concurrent
architectures. An Actor enconpasses an independently executing
thread of <control that processes one inconmng nessage by
perform ng one or nore of three operations: 1) sending nessages
to other Actors, 2) creating a replacenent behavior to process
the next nmessage received by the Actor, and 3) creating
addi tional Actors. The behavior of an Actor can be history
sensitive; the actions taken by an Actor cannot be presuned
sequenti al . Actor creation is a primary part of the
conput ati onal nodel because conputations are nade increasing
concurrent by assigning parts of a problemto individual Actors.

All comuni cations between Actors use asynchronous,
buf fered nessage passing. This wuniform conmunication nodel
permts an Actor to send nessages to itself wthout fear of
deadl ock. The arrival order of nessages into an Actor’s queue
Is assuned to be arbitrary, so nessages arriving at a queue
sinmultaneously are placed into the queue in fair, but
unpr edi ct abl e order. In addition, the Actor Mddel assunes that
all nmessages sent will be delivered eventually.

Conmputation anbng a system of Actors is perfornmed in
response to nessages, synonynous with tasks, sent to the system
Each task consists of three conponents: 1) a tag that uniquely
identifies the task within the Actor system 2) a target which

ntl n 2 1
[ [ [ --- [ [ | malqueue
1
createsactors _____p | [ mail queue
L7 ~ _Creates tasks
<4 -

specifies task

replacement

behavior

Figurell-1. The Actor Model
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is the nmail address to which the nessage is to be delivered, and
3) a nessage identifying the operation to be perforned by the
target Actor and specifying any paraneters needed. To send a
task to an Actor, the mail address of the target nust be known
by the sender. As conputation proceeds, new Actors are created
within the system as well as new tasks. As tasks are conpl eted
and Actors are no |onger needed, garbage collection renoves
t hem

Each Actor is described by specifying a behavior and a nuil

address for the Actor. The Actor Mdel is illustrated in Figure
[1-1.
An Actor, Xn, is shown accepting a nessage, nh, creating a task
for another Actor (not shown in the figure but already known to
Xn), creating another Actor, Y1, and specifying a replacenent
behavior for itself, Xn+l, to process the next nmessage, n+l.
Al'l control in the Actor Mddel results from nessage passing.

To inplenent the Actor Mdel, Agha defined two | anguages: a
procedural |anguage, called a Sinple Actor Language (SAL), and a
nmessage- passi ng | anguage, nanmed Act. SAL is intended as a
teaching tool, while Act provides a kernel, or mniml, actor
| anguage upon which richer |anguages, such as Act3, can be
built. 1In both SAL and Act, the sane facilities are provided.

The nost fundanental semantic in an actor |anguage attaches
an identifier to a behavior definition. Wthin a behavior
definition, is an acquaintance list (the nail addresses of other
Actors known to this behavior) and a list of nessages that the
Actor can process. I ncom ng nessages are bound to a specific
set of operations according to these lists.

A mnimal actor |anguage also includes primtives to create
new actors and tasks (i.e., send nmessages) and to identify
internal actors, called receptionists, to be known outside of
the actor system and to declare actors, called external actors,
that are known from outside of the actor system



The final set of constructs needed in a mnimal actor
| anguage include a beconme conmand, to specify a replacenent
behavi or, and sonme conditional statements (if-then-else and case
forms). Whenever an actor fails to specify a replacenent
behavi or, the default replacenent behavior is identical to that
of the actor.

Wthin a mninmal actor |anguage, there are three types of
actors: serialized, inmutable, and built-in. Serialized actors
are sensitive to history and, thus, specification of a
repl acenent behavior nust be delayed until the relevant state
changes have been nade within the actor. | mut abl e actors are
stateless and, thus, need not specify a replacenent behavior.
Built-in actors can perform their behavior w thout passing any
messages and, thus, prevent the nessage passing between actors
from becomng infinite. More powerful constructs (for variable

[ obj ect object nane

object creation

(state representation of |[|ocal

. message acceptance
vari abl es ) @
(script ST

execution

(=> nessage pattern where ofwan-for/v
constraint ... action)

message acceptance

FigureI1-3. ABCM/1 Modes

function signatures, for delegation, for sequential conposition,
and for del ayed and eager evaluation), not included in a mnina
actor |anguage, may be built from the mninmal |anguage and then
presented in nore abstract form as part of a higher |evel actor
| anguage.

In summary, the Actors Mdel, and related actor kernel
| anguages, define a mniml set of operations that enable a
di verse set of conputations to be carried out concurrently.
Since each function is an actor, the processing overhead in
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actor systenms can be quite large, unless a nethod exists to
provide extrenely |I|ight-weight processing and fast nessage
passi ng. The assunptions about guaranteed delivery of nessages
could place an inpossible burden on a communications system
especially if the individual actors were distributed in a |arge
comuni cati ons network. The Actors Mdel 1is theoretically
interesting, but the practicality of actors as an inplenentation
nmet hod for distributed systens i s questionable.

ABCM'1 and ABCL/1. The ABCM 1 nodel enconpasses the
concept of objects and the interactions between them Each
obj ect possesses its own thread of control (i.e., is an active

object or actor), encapsulates a set of nethods that can be
i nvoked by arriving nessages, and contains, optionally, |ocal
variables that persist across invocations of the object’s
nmet hods. Each nethod wthin an ABCM 1 object conprises a set of
operations that may include any of the follow ng: 1) send a
nmessage to another object, 2) create another object, and 3)
access and alter |local variables. The nethods that can be
I nvoked within an object, at a given point in tinme, depend upon
the nessages that an object can accept. In turn, the nessages
that an object can accept depend upon the nessage patterns, the
paranmeter values within a nmessage, and the current state of the
object. Figure Il-2 gives a sinple view of an ABCM 1 obj ect.

An ABCM1 object is always in one of three states: 1)
dormant (awaiting a nessage), 2) active (a nessage has arrived
that matches a nessage pattern, including any constraints, in
the object), or 3) waiting (the object is waiting on a reply
from anot her object before continuing). If an arriving nessage
satisfies nore than one nessage pattern/constraint pair, then
the first pair (from the beginning of the script) that 1is
matched wll be invoked, i.e., there is no nondetermnism
bjects with local nenory are serialized, i.e., only one nessage
can be processed at a tine.



Each object is assumed to own an infinite input queue, but
the nmanagenent rules for that queue are rather unusual. For
exanpl e, a dormant object exam nes the queue for a nessage that
mat ches a pattern-constraint pair wthin the object. The first
such nessage is processed and all nessages that were in the
gqueue ahead of the accepted nessage are discarded. On the other
hand, when the object is in waiting node, the first nmessage
matching any of +the awaited pattern-constraint pairs that
arrives in the queue is received imediately, but no nessages
are di scarded.

The message passing nodel within ABCM1 plays a significant
semantic role. Al nessages nust identify one or nore receivers
(there is no broadcast); therefore, an object nust know about
other objects in order to send a nessage. An object may be
created knowi ng about another set of objects, and nmay al so cone
to know about and forget about other objects during the course

of its life (but an object always knows about itself). A
nessage can be sent by an object at any tine. Messages are
guaranteed to arrive within a finite time and will be buffered

upon reception until an object is prepared to process them The
i ncom ng nessages are queued in the order in which they arrive.
Any messages sent from an object A to an object B are guaranteed
to arrive in the sanme order in which they were sent. (This is,
of course, an assunption that cannot be net by nost conputer
net wor ks wi t hout appropriate protocols. If these protocols are
not provided in the network, then the ABCM 1 nodel woul d becone
very cumnbersone.)

Messages sent between ABCM 1 objects are of three types:
1) past, 2) now, and 3) future. Past nessages are sinply
asynchronous datagrans, the sender can continue processing after
sending a past nessage. Now nessages are synchronous procedure
calls, the sender nust wait for a reply after sending a now

nessage. (For obvious reasons, an object cannot send a now



nessage to itself.) Future nessages are asynchronous datagrans
that require a reply sonetinme in the future, but the sender of a
future nmessage can continue processing. The reply to a future
nmessage is stored within a future variable until the sender of
the future nessage is ready to access the reply. |[|If the sender
of the future nessage attenpts to access the reply before it has
been produced, then the sender nust wait for the reply.

An interesting and useful addition, over and above the
actor nodel defined by Hewitt, provided by ABCM 1 is the concept
of express node and express nessages. Messages that are sent in
express nmode wll interrupt the processing of the receiving
obj ect. (Only one level of priority 1is supported, i.e.,
i nterrupt processing cannot be interrupted.) ABCM 1 provides
rules that specify when interrupts can be honored. I n general
interrupts are not accepted while an object is accessing |ocal
vari ables, nor when an object is executing an atomc block (a
sequence of actions designated as atomic by the programer).
Further, the programrer can specify whether nornmal processing
will be aborted or resuned after an interrupt is received. Each
type of message nmay be sent as either a normal or express
nmessage, |eading to the follow ng conbinations.

NORMAL EXPRESS
Past [T<=M [T <<= M
Now [T <== M [T <<== M
Future [T <= M$ X] [T <<= M $ X]
These nessage types are expressed in the syntax of ABCL/ 1. In

each case, a nessage, M is sent to an object, T. An express
nmessage i s designated by a double arrow, <<. A past nessage is
designated by a single equal sign, = A now nessage 1is
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designated by a double equal sign, == A future nessage is
designated by a bound (with the $) variable, x.

The ABCL/1 |anguage that inplenents the ABCM 1 nodel does
not attenpt to represent every concept as an object (as, for
exanple, Smalltalk does), but includes constructs from Lisp.
ABCL/1 does, however, enbody sonme key features for parallelism
and synchroni zati on. ABCL/1 objects operate concurrently, so,
for exanple, if an object sends nmultiple nmessages to different
receiving objects, the processing anong the receivers wll
overlap in tinme. ABCL/1 also pernmits an object to send multiple
nessages in parallel and to multicast messages simultaneously to
a group of objects. Regar di ng synchronization, ABCL/1 provides
a nunber of nechanisns: 1) serial execution of actions related
to a received nessage, 2) a wait-for nobde that requires an
object to suspend processing until an acceptable nessage is
recei ved, and 3) now and future nessages.

In summary, ABCM1 and ABCL/1 provide a practical
refinement to the actor nodel of Hewitt and Agha. ABCM 1
provides a rich semantics for message passing, synchronization,
and parallelism The addition of express nbde nessages, and the
associated interrupt processing capabilities, Is extrenely
useful in real systens. The inclusion of provisions for
atomcity vyields a programmer-controlled nutual excl usi on
mechani sm The addition of [|anguage <constructs from a
procedural programm ng | anguage enable active objects to be
reserved for significant concepts wthin an application,
al though the sinplicity and el egance of the actor nodel is |ost.

B. Distributed Mdel s

Distributed nodels assune that objects, each encapsul ating
somne significant servi ce, are di stributed around a
| oosel y-coupl ed network of conputing nodes. Sonetinmes, the
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nodes are assuned to be heterogeneous, sonetines honbgeneous.
We survey four particular nodels: 1) ARGS, 2) the Common bj ect
Request Broker Architecture (CORBA), 3) the Mnager Mdel, and
4) the Chorus Object-Oriented Layer (COQL).

ARGUS. ARGUS is an integrated progranm ng |anguage and
syst em nodel proposed by Liskov when she was at MT.** The main
focus  of ARGUS is provision of reliable, di stri buted
transactions within a network of conputation servers. The
assunptions nmade within the ARGUS nodel are: 1) the network and
t he connected conputer nodes may be unreliable, but all failures
can be detected and 2) the time required to send nmessages
between nodes is long, relative to the tinme needed to access
| ocal nmenory within a node. ARGUS was designed to neet the
followi ng requirenents: 1) enable a systemto provide reliable,
continuous service in the face of node and network failures, 2)
facilitate |ogical and physical changes dynamcally while the
system continues to operate correctly, 3) permt each node to be
managed aut ononmously of every other node in the system 4) allow
the programmer to control the allocation of nodules to nodes, 5)
I ncrease processing performance through concurrency, and 6)
mai nt ai n consi stency anong the distributed data.

To accomodate these requirenments, ARGUS nodels activities
as distributed transactions that are atomc and recoverable.
Each transaction wll conplete totally or wll be aborted
totally (i.e., the system state will remain consistent). Each
transaction is guaranteed to appear to be serial with regard to
ot her transacti ons.

Nodes in ARGUS communi cate through nessages, each of which
conprise a paired send and reply. The ARGUS nodel provides only
a renote procedure call, wth at-nost-once semantics (each
nessage is received and acted upon once, or never received, but
the sender is apprised of non-receipt.) Liskov argues that this
nodel of nessage passing allows the conmunication systemto nmask
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all the details of protocol processing from the application
programmer, while giving the programmer exactly the guarantees
and information needed to cope with failures. O course, stop
and wait approaches can |lead to deadl ocks, but ARGUS ignores
such possibilities, assumng that a human user wll abort a
gi ven transaction should the waiting time become excessive.

The architecture of ARGUS relies on a distributed set of
guar di ans. A guardian, encapsulating processes and data,
controls access to sonme resources by checking access rights and
by synchronizing concurrent accesses. Processes wthin a
guardi an can comuni cate through shared data, while processes in
di fferent guardians can communicate only via nessages.
Guardians maintain two copies of their data: one in nmenory and
one on secondary storage. The secondary storage shadows the
guardian’s primary nenory, allowing the guardian to resunme from
the point of interruption after a node failure.

In sumary, ARGUS supports distributed services by
encapsul ati ng processes and data, by synchronizing access to the
processes and data, and by recovering from the point of
interruption after a node, on which guardian processes execute,
has fail ed. Mul tipl e guardians can cooperate via synchronous
nessage passing to acconplish application objectives.

Common (bj ect Request Broker Architecture (CORBA). The
CORBA defines a framework for linking together client and server
objects distributed around a conputer network. %% A
fundanmental assunption of CORBA is that the client objects may
be devel oped independently by various conpanies, my exhibit
different interfaces, and may be inplenented in an assortnent of
progranmm ng | anguages. To accommpdate these assunptions, CORBA

conprises a nunber of conponents, sone are illustrated in Figure
Il-4.

The CORBA conmponents shown in Figure 11-4 indicate how
client and server object inplenentations are integrated. The
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+ an object nodel,

¢+ the ORB Core,

¢ an interface definition | anguage (1DL),

¢ a dynam c invocation interface,

¢ a static invocation interface,

¢ an interface repository,

¢ an object adapter, and

¢+ object inplenentations.
Sonme of these conponents have already been expl ai ned, but others
deserve di scussion.

The CORBA object nodel is a conventional object-oriented
paradi gm that includes: objects, requests (or nessages or mnethod
i nvocations), types, an object interface, operations, and
attributes. Perhaps the CORBA object nodel is better viewed
through the lens of prohibited concepts. CORBA does not all ow
obj ect aggregation or inheritance, does not define how objects
can be linked at run-tine, does not address creating, copying,
and nmanagi ng objects, does not include exception handling, and
does not enforce object operations as atomc transactions.
(These are some nmjor shortcon ngs.)

The ORB Core conprises a proprietary inplenentation of
functions for object |ocation, nessage delivery, and nethod
bi ndi ng. The proprietary nature of the ORB Core is a nmmjor
deficiency of CORBA as a standard. CORBA allows software
vendors to create clients that can be noved from one vendor’s
environnment to another’s, but the request brokers of different
vendors cannot necessarily work together in a heterogeneous
network of ORBs that can find and invoke object operations
t hroughout a net worKk.

The interface description |anguage allows an existing
application interface to be described in terns that can be used
to conpile a mapping between CORBA interfaces and the
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application interface. This permts existing applications to be
integrated into a network of ORBs wi thout being rewitten.

In summary, CORBA defines an architecture for portability
of client objects anpbng server objects inplenented by a variety
of vendors. Wiile CORBA is extensible, its failure to address
sonme key features of the object-oriented paradigm coupled with
the current proprietary nature of the ORB Core | eave nmany issues
open and requirenents unsati sfied.

The Manager Mbdel. The Manager Model distributes a set of
Managers across a network of conputing nodes.®® These Managers
can cooperate to perform functions through transparent
operations (TOP). A TOP allows a Manager to invoke an operation
(via a request) on and receive a result (via a reply) from
anot her Manager in a universe of interconnected, heterogeneous
nodes.

The Manager Mbdel guar ant ees t hree desirabl e
transparenci es: addressing, distance, and data representation
Addressing transparency is provided through a uniform [ ogical
nane space, coupled to a nane service that resolves the specific
address of each Manager. Distance transparency is provided by a
mappi ng function that 1invokes the appropriate comunication
mechani sm dependi ng on where the destination Manager is |ocated.
Data representation transparency is provided by defining
I nterfaces using Abstract Syntax Notation 1 (ASN. 1) and by using
appropriate encoders and decoders for each ASN 1 interface
defi ned.

When a Manager cannot conplete a request, the operation may
be del egated to another Manager. Managers nmay be related through
creation or through service, the service relationship has two
formns: client-server and superi or - subordi nat e (the
superi or-subordi nate relationship generally follows the Manager
Creation tree).
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Three fornms of cooperation are incorporated in the Mnager
Model . Client-server cooperation allows one Manager to invoke
services from anot her Manager. Peer-to-peer cooperation enabl es
two Managers to invoke services from each other to support an
application. Cooperative processing involves a Manager that is
conducting operations with nultiple Managers simultaneously to
support an application.

Whil e a Manager appears to be a single entity when viewed
from the outside, internally a Mnager is conposed of a
collection of Wrkers. Wrkers, the unit of concurrency in the
Manager Model, provide the active threads of control for a
Manager. Thus, when a request is received, a Coordinator Wrker
can create a Server Wrker and assign the request. The interna
behavior of each Wrker is specified via a structured finite
state machine (SFSM . SFSMs permt behavior to be specified
through a hierarchy of FSMs. Sonme W rkers may conprise a single
state (i.e., are stateless) and, thus, accept any operation at
any tine.

Each Wbrker in a distributed system of Mnagers is an
instance of a W irker d ass. The nodel supports multiple
i nheritance. Operations between Wrkers can be invoked
synchronously or asynchronously.

In summary, the Manager Model goes further than the
existing CORBA to define and inplenent a distributed,
obj ect-ori ented nodel . The flexibility of the Manager WMbdel is
greater than that of ARGUS. The Manager Mdel accomobdates
het erogeneity by relying on industry standard protocols to
provi de conmuni cati ons. The Manager Moddel insulates the
application program from issues of comunication diversity and
conmputing environment variability.

Chorus bject-Oiented Layer (COQ.). COOL was i npl enented
to evaluate the feasibility of managing objects via Kkernel
functions atop which nultiple object nodels can be mapped.?®
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Chorus is a distributed operating system nucleus that permts
the inclusion of subsystens. Subsystens run within the nucl eus
address space and are accessed through systemcalls.

One Chorus nucleus runs on each network node. The node
nucl eus manages the operation of actors; actors are anal ogous to
processes in UN X, except that each actor can support nultiple
threads of control. Threads within an actor can conmunicate
usi ng shared nenory, but conmunication between actors requires
nmessage passing. Chorus supports both synchronous and
asynchronous nessage passing. Messages are passed, transparent
to the location of the actors, across ports between actors.
Chorus al so supports nulticasting nmessage passing and a gl oba
space of unique identifiers.

COOL is layered on top of Chorus as a subsystem in the
nucl eus. COOL enbodies a set of object managers, one per node,
that handl e object creation, copying, deletion, comunication,
and mgration. COOL provides an object nanme server that
integrates into the UNIX file nam ng hierarchy. bj ects may be
declared as globally known or locally known. The intent of COOL
is to support the nmapping of distribution and concurrency
functions onto existing object-oriented | anguages, such as C++.

In summary, COOL |ays an object nanagenent nodel atop a
distributed operating system kernel (Chorus) to facilitate
mappi ng concurrent and distributed object functions onto
exi sting object-oriented |anguages. COOL assunes a honbgeneous
net wor k. COOL does not provide an object location facility.
The COOL nodel breaks down as the granularity of the objects
decr eases.

C bject-Oiented Language Extensions

Sonme proposals for concurrency anmong objects start with an
existing object-oriented |anguage and introduce constructs,
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including syntax and semantics, that extend the |anguage to
provi de active objects and synchronizati on mechani sns. Here we
survey three such proposals. One proposal specifies additions,
previously developed for C, to C++ that introduce concurrency
functi ons. A second proposal descri bes nechanisnms for
supporting real-time requirenments by adding | anguage features to
C++. The final proposal adds concurrency to Eiffel.

Concurrent  Ct++. Two orthogonal extensions to the C
progranmm ng |anguage were developed at Bell Labs during the
second half of the 1980’'s: one extension, C++, incorporated

object-oriented features into C, the other extension, Concurrent
C, incorporated concurrency features into C Resear chers at
Bel | Labs are now conbining these extensions to form Concurrent
C++. 27

Concurrent C introduces the concept of processes that can
execute in parallel and that can communi cate between each other
usi ng synchronous and asynchronous nessage passing. Concur rent
C++ adds: 1) potential to encapsulate interfaces to processes
within classes and to represent nessages as classes and 2)
I nvocation of constructors and destructors at process creation
and term nation. hj ects that are shared by multiple processes
can be encapsulated in a guard process.

At the tinme the referenced report was witten a nunber of
I ntegration issues, mainly relating to keeping the flavor of C++
while adding concurrency features, were unresolved. For
exanpl e, passing references to objects between processes is not
possi ble, so a nmethod of object reference between processes nust
be devi sed. As anot her exanple, although deriving one process
from another using C++ inheritance is desirable, unfortunately

this seens to be inpossible. In fact, nerging classes and
processes into a unified concept, a natural approach in many
concurrent object |anguages, was still being investigated for
Ct++. As a final exanple, object nethods in C++ can be
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over |l oaded, but no decision had yet been nade about overl oading
nessages, the concurrent counterpart to method invocations,
passed between processes.

In summary, the effort at Bell Labs to conbi ne concurrency

into C++ illustrates a drawback common to all | anguage extension
appr oaches: new features nust be added in a manner that
preserves the existing semantic nodel of the |anguage. Thi s

requirenent limts technical options for adding concurrency.
RTC++. RTC++ extends C++ to include: 1) active objects, 2)
optional specification of timng constraints on methods and even
i ndi vi dual statenents, and 3) optional specification of periodic
tasks with hard timng. RTC++ also includes | anguage mechani sns
to avoid priority inversion and to allow inheritance anong

active objects. RTC++ allows concurrent execution anong the
met hods in an active object, but each nethod may, itself, only
be executed serially, i.e., by one thread at a tine.

Active objects in RTC++ are declared as active classes. By
default, an active object has one thread of control, but
multiple threads of control can be specified. Threads may be

sl ave threads, invoked by a nethod request, or master threads,
executing independently in the background. \Wen a slave thread
Is invoked, the slave inherits the priority of the caller; this
avoids the priority inversion problem If so specified, slave
threads may be interrupted when a nethod is invoked by a higher
priority thread; however, if the interrupted thread is executing
in a critical region, the interrupted thread wll continue
execution until it exits the critical region.

RTC++ introduces a guard expression that can delay
execution of a method until a specific condition is net. A
guard expression may include specification of a function to be
executed if the condition is not net. Quard expressions are
al so used to inplenent critical regions.
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Al'l message conmunication in RTC++ is synchronous. Replies
can be sent by two nechanisns: 1) return statement (the reply is
sent and the renote procedure termnates) or 2) reply statenent
(the reply is sent and the renote process continues execution).

RTC++ provides nechanisns to catch and handle exceptions
from an object, from a thread, or from a kernel. Language
constructs also allow protected regions to be declared
exceptions are not pernmtted while a protected region is being
execut ed.

RTC++ includes are nunber of timng facilities. Each RTC++
nmet hod may be augnented with a deadline and a specification of
the function to invoke if the deadline is not net. I ndi vi dua
RTC++ statenents may be augnented wth timng constraints:
execute within, at, or before a specified tine. For master
threads, timng cycles can be specified: start cycling at a
specific time, termnate cycling at a specific tine, execute
with a designated periodicity while cycling, conplete within a
specified tine during each execution.

In summary, RTC++ exhibits two faces: an object-oriented
concurrent |anguage and a real-tine |anguage. RTC++ adds the
concept of active class to the usual concept of a C++ class
RTC++ supports only synchronous comrunicati on. In many ways,
the specification of RTC++ appears superior to Concurrent C++ as
proposed by Bell Labs researchers.

Eiffel Concurrency. Meyer pr oposes to i ntroduce
concurrency into Eiffel in a fashion that matches the style of
the |anguage very well and that requires (the nore pessimstic
m ght choose the word "allows") no explicit programmer contro
of concurrency, except specification of which Eiffel objects can
be executed concurrently.® Myer starts from two assunptions:
1) a concurrency nechanism should change sequential Eiffel as
little as possible and 2) a concurrency nechanism nust be
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conpatible wth the Eiffel assertion nechani sns. These
assunptions constrain Meyer’s sol ution space.
Meyer introduces the key word separate as a qualifier that

can be applied to Eiffel object declarations. An obj ect
declared as separate, we wll call them active objects, may
execute on its own (logical) processor. Meyer overloads the

semantics of nethod preconditions such that, for active objects,
evaluation of a precondition that is not satisfied means that
the <client (operation caller) cannot be served until the
precondition is meant. Therefore, when an active object
provides the service, an unsatisfied precondition does not cause
an exception, rather the server is blocked until t he
precondi ti on becones true. Wthin the client, results from an
active object nay be assigned to another object declared active
(and of a type that conforms in the Eiffel sense).

After a client invokes an operation, A in an active
object, the client can continue concurrently unless the client
attenpts to perform an operation the requires A to have been
conpl et ed. If A nust be conpleted for the client to continue,
the client waits inplicitly.

Meyer defines concurrency granularity to be at the |evel of
oper ati ons. No operation may be interrupted, so each operation
I nvocation is atomc. Meyer does envision library routines that
can halt, under programrer control, execution of an operation.
O course, Myer also foresees operations that can block
interruption of an operation, in which case an Eiffel exception
woul d be raised should an operation be interrupted.

In summary, the Eiffel concurrency schenme defined by Myer
is sinple and elegant, relieving the programer from nost
burdens usually associated with concurrent progranm ng. (O
course, sonetinmes, the progranmer can benefit from control
| evers, such as those defined in RTC++.) The schene proposed by
Meyer appears susceptible to deadl ocks. Meyer seens to have
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swept nost issues dealing wth conmunications anpong active
objects out of the language and into run-tine libraries. W see
no clear path from Meyer’s concurrent Eiffel to a distributed
Eiffel, except by making distribution conceptually transparent
to the progranmmer.

D. Q her Mbdel s

Many researchers are investigating nodels for concurrent
and distributed objects. Sonme nodels concentrate on specific
i ssues, and, so, are not easily classified. 1In this section, we
survey five such nodels: 1) Trellis/OM, 2) Emerald, 3) Hybrid,
4) Ellie, and 5) MELD. W chose these nodels because they each
enphasi zed sone significant issues relating to concurrency anong
and distribution of objects. Difference in enphasis leads to
di versity in approach.

Trellis/OM. The Trellis/OM, hereafter Trellis, Language
supports concurrency at the level of nethod invocations.> The
intent of Trellis is to support noderate- to |arge-grained
parallelism where concurrency exists anong logically separate
tasks invoked independently by users. A given task can create
new, subordinate tasks and can wait for subordinate tasks to
term nate. Each task term nates with either a normal return or
an exception. A task cannot be aborted, even by its parent
t ask.

Trellis provides basic facilities for concurrent tasks to
access shared objects, but the burden for managi ng that access
falls on the programer. Locks are inplemented for nmutual
excl usi on. Tasks attenpting to reacquire |locks are given
priority over tasks that are attenpting to acquire the lock for
the first time. Reacquirers of a lock are ordered in accordance
with the time they were awakened; this helps to prevent
deadl ocks. WAit queues are inplenmented for inter-task signaling
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and for waiting on such signals. A task awaiting a signal may
specify a time after which the task wll be awakened if no
signal is received.

Tasks can be interrupted, or swapped to disk, except when
they are executing in a critical section, such as stack creation
or deletion, calls to the run-tine system or initialization of
gl obal vari abl es. Al'l | anguage-provi ded functions that operate
on | ocks and queues are atomc.

In summary, Trellis defines an environnment where nultiple
tasks can execute concurrently, but where little concurrency is
supported wthin a task. The Trellis Language, and its
associated run-tine system provides a sufficient set of
constructs to control mutual exclusion and synchroni zati on anong
concurrent tasks. The programmer nust manage these nechani sns.

Ener al d. Enerald is an object-oriented |anguage and
run-time system designed expressly to support the needs of
distributed object systens.?® Emeral d introduces object
|l ocation and nobility as explicit features. hj ects can nove
between nodes at any tine and can be invoked regardless of
| ocati on. An  Enerald object conprises an identity, a
representation, and a set of operations. An object may be a
process wth an independent thread of <control, or my be
passi ve, executing only when invoked. Eneral d objects have an
explicit location attribute. Obj ects declared to be inmutable

can be replicated within the system of objects, allowing renote
references to be resolved by object copying.

Eneral d supports concurrency between and wthin objects. A
process object has its own internal thread of control that is
initiated upon object creation. At any tine, nultiple processes
may be executing wthin a single object as a result of
I nvocation of the object’s nmethods by different processes. To
permt nutual exclusion, objects can contain nonitor sections,
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i.e., sections where nethods and variables are guarded by
condi ti ons.

Al though all Enmerald objects share the sane conceptual
nodel, three different inplenentations of that nodel exist.
Standard types, such as integer, are inplenented as a nenory
| ocation, coupled with in-line operations. bj ect s cont ai ned
within another object are inplenented as conpiler-allocated
menory wth the operations represented as procedure calls.
hj ects that can nove around the distributed system and that can
be renotely referenced by other objects are inplenented in
kernel -al |l ocated data space. Ref erences to these objects are
made via an object table.

I nvoki ng objects renmotely in the Enerald system can lead to
sone interesting effects. For exanple, paraneters nmay be passed
to a renote object by copying them Unl ess the objects passed
are inmutable, the location of the object nust be updated
t hroughout the system As a second exanple, an object nmay be
noved to a renote node so that operations on objects at the
renote node can be called locally. O course, a progranmer can
explicitly request that specific objects be noved at any tine.
This schene requires a global accounting of all objects and
probably does not scale to large, distributed systens.

In sumary, Enmerald was designed specifically for
distributed object systens. bj ects can be invoked wthout
regard to their location. The Enerald run-time system attenpts
to nove objects around to nost efficiently perform renote
i nvocati ons. Programmers nmy also specifically nove objects
anong nodes in the system Eneral d probably does not scale up
to global, distributed systens.

Hybri d. Hybrid is an object-oriented progranm ng
| anguage. °° Hybrid objects can be either passive or active.
Active objects communicate through renote procedure calls which
al ways represent a transfer of control, or creation of a new

25



control thread, called an activity. bj ects are organized into
domains, i.e., processes. Multiple activities nmay execute
within a domain.

Hybrid allows (forces) the programmer to establish the
granularity of concurrency by defining each domain (true

concurrency occurs only between domains). A domain serializes
access to operations on objects within the donain. Activities
represent the threads of control that can either: be executi ng

In a domain or waiting on a queue.

In Hybrid, calls to operations my be delayed. Each
operation can be associated with a delay queue that can be
opened and cl osed by operations on the object. Each object wll
serve requests previously delayed before honoring newy arriving
requests. (Operations wthout a delay queue are nodeled as
owni ng permanently open delay queues.) Del ay queues serialize
access to operations in an object; increased concurrency can be
achi eved t hrough del egati on.

Hybrid contains a delegate construct which can bracket an
expr essi on. Expressions wthin a delegate bracket can be
execut ed asynchronously. When an object delegates a call, the
calling object <can proceed in parallel wth the called
object(s). Delegation can be used together with delay queues to
i npl ement constraints or invariants.

Hybrid permts even greater concurrency through the col oop
and cobl ock constructs. Wthin these constructs new activities
can be started and can then execute concurrently; the initiating
object nust wait until the newy created concurrent activities
have conpl et ed before proceedi ng.

Mut ual exclusion is provided in Hybrid by the atomc
st at enent . A group of Hybrid statenents bracketed within an
atom c block may not be executed by nore than one activity at a
tine.
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In sunmary, Hybrid is a cross between an actor nodel and an
obj ect-oriented |anguage, but w thout inheritance. Hybrid adds
concurrency to object-oriented systens in a practical manner
simlar to ABCL/1, but Hybrid does not include features for
priority interruption.

Ellie. Ellie is an object-oriented programm ng | anguage
that allows fine-grained parallelism? Fine-grained in Ellie
means that the smallest operations, such as nultiplication and
additions, can be inplenmented as parallel processes. Ellie also
supports nediumgrai ned (sets of operations) and coarse-grained
(units conprising a large nunber of operations) parallelism
The grain size for parallel operations in a specific programis
controlled by the compiler. The compiler wll aggregate Ellie
operations into larger objects when the target conputer cannot
efficiently support the fine-grained parallelism possible in
Ellie prograns.

Ellie supports an object nodel simlar to that of
Smal ltalk, but Ellie objects are active processes. Ellie
objects may either be operational (i.e., have side effects) or
functional (i.e., inmmutable). Ellie provides object typing,
genericity and pol ynorphism and del egati on and inheritance.

Paral l elism and synchronization within Ellie are achieved
by two forns of renote procedure call (RPC): bounded and
unbounded. Bounded RPCs are normal synchronous object nethod
I nvocati on. Unbounded RPCs assign a result to a future object
and allow the caller to continue. Later, when the caller nust
access the future object, the caller will block until the result
I's avail abl e. Ellie also includes a nmechanism to synchronize
access to local variables within an object after invoking a set
of parallel operations. Synchroni zati on delays are handl ed,
transparently to the programer, by the run-tinme system

Ellie introduces a nechanism that enables objects to
dynami cally alter the operations exported at their interface.
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Such a mechani sm enabl es parallelismto be restricted or enabl ed
under condi tions det erm ned during program execution
Restricting access to operations is the only neans avail able for
a programmer to control mutual exclusion, and, thus, a
progr anmer must exerci se gr eat care when speci fyi ng
synchroni zati on anong fine-grained, parallel processes.

In summary, Ellie extends object-oriented concepts to
facilitate execution on nassively parallel architectures. The
Ellie conpiler automatically adjusts the parallelism in a
program to account for the limtations of a target conputer.
Al as, the programmer nust bear the burden of ensuring correct
synchroni zation anong the fined-grained, parallel operations
within a program

MELD. MELD is an object-oriented programm ng |anguage t hat
provi des encapsul ated classes, nultiple inheritance, and active
obj ects.®** MELD is designed to support concurrency at four
| evel s: macro data flow, nethods, objects, and transactions.
MELD statenments enclosed in a data flow block are ordered only
when the output of one statenment is anong the inputs of another;
otherw se, the statenments are unordered and may execute in
paral | el . Multiple nethods wthin an object nmay execute
simul taneously, but the progranmmer may identify atom c bl ocks
Wi thin an object. MELD objects can execute concurrently via
synchronous and asynchronous nessage passing. MELD al so al |l ows
transactions that cut across nmultiple nethods and objects.
Transactions appear to execute atomically and serially wth
respect to other transactions.

Wthin the address space of one MELD process, an arbitrary
nunber of threads may execute concurrently. Each thread may
operate across nultiple processes (i.e., address spaces), wth
the local thread suspended until control returns fromthe renote
process.
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In summary, the design of MELD includes the full range of
concurrent nodels encountered in the other approaches we
surveyed. Most concurrent mechanisns within MELD, specifically
data flows, object concurrency, and transactions, are controlled
by the progranm ng | anguage. Concurrency anong MELD object
nmet hods requires that the programrer specify operations wthin
t he object that nmust be executed atom cally.

[11. Taxonomy of Issues in Concurrent and Distributed Objects

As concurrency is introduced into otherw se sequential
prograns, a new |ayer of issues is introduced. Further, because
distribution inplies concurrency, introducing distribution into
a software system adds another layer of difficult issues.
Coupling concurrency and distribution with object-orientedness

can raise even nore issues, not all of which are well
under st ood. Bel ow we present a taxonony of issues regarding
concurrent and distributed objects. Since issues related to

concurrency are a subset of the issues related to distribution
we wll begin with concurrency. Pl ease be aware that, while
many of the issues presented are interrelated, a taxonony
separates issues and classifies themfor purposes of exposition.

A. Concurrency

Concurrency anong threads of control that nust coordinate
operations raises sone interesting, and for the nost part well
under st ood, | ssues. Such issues remain when an object
orientation is superinposed on concurrency (or vice versa). An
object orientation can, however, add an interesting twist to
certain concurrency problens. Below, we identify, classify, and
describe concurrency issues, and we introduce, where warranted,
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specific object-oriented concurrency concerns. A quick overview
of the taxonony is given in Figure II11-1.

Ganul arity of Parallelism The granularity of parallelism
defines the limts of concurrency that can be achieved in a
particul ar system The traditional granularity for concurrency
is the process or task. Each process has its own address space
and can access nenory, the processor, and other resources in
conpetition with other processes. More recently, wth the
advent of several popular real-tinme operating systens such as
VRTX and i RMX-86, granularity has noved within the process or
task to the level of threads of control. Threads of control
operate within the context of a process, sharing the process’
address space, but being independently scheduled wthin the
process. A thread of control can be viewed as a |ightweight
process. Swi tching between processes nornmally requires saving
and loading nenory nmanagenent registers; switching between
threads of control wthin a process requires only that the
program counter and programregi sters be saved and | oaded.

Wthin active object nodels, objects can have their own
thread of control. In these nodels, objects mght or mght not
share an address space with other objects. The mapping of
objects and threads of control onto operating system resources
varies with the specific active object nodel and the operating
system environment. When objects define the granularity of
parallelism each active object can be independently schedul ed,
can conpete for resources, and mght require synchronization
Wi th other active objects. When an object is state-sensitive,
access to the object nust be serialized. When an object is
I mrut abl e, access to the object may occur in parallel.

In a restricted set of active object nodel s, t he
granularity of parallelism reduces to the level of nethods.
Some nodels serialize access to each specific nethod, while
allowing parallel access anong different objects. Sone nodel s
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serialize access to state-sensitive nethods, but perm t
i mmut abl e nmethods to operate in parallel. O her nodels allow
the programmer to open and close access to nethods dynam cally
depending on the state of the object encapsul ating the nethods.

A few, recently desi gned obj ect | anguages perm t
concurrency at the level of statenent bl ocks. Most  such
| anguages enabl e the programmer to specify statenment groups that
can be executed in parallel. Some | anguages attenpt to provide
concurrency in a programmer-transparent fashion, enf orci ng
statenent sequence when the context requires and allow ng
paral |l el execution when sequential execution is not required.
These | anguages rely on their conpilers to perform the required
analysis, but still seem to require care on the part of the
progr amer .

Whil e rmuch research into concurrent object systens ains to
reduce the Ilevel of granularity (probably to accomobdate
massively parallel computing architectures), a few proposals
(intended for application in large, heterogeneous conputer
net wor ks) define concurrency at t he megaobj ect | evel .
Megaobj ects encapsul ate sizable services (often inplenented as
mul ti ple processes, threads, or active objects), that are then
distributed around a conputer network, where they can provide
renote services to a variety of clients. The negaobject is the
| evel of visibility to clients in the network and, thus, defines
t he apparent |evel of concurrency for those clients.

Conmmuni cati ons Met hod. Regardl ess of the granularity of
parallelism in a system the parallel wunits often need to
exchange information to cooperate on a conputation. Three
gener al comuni cations nethods are possible: 1) shared
vari ables, 2) nessage passing, and 3) renote procedure calls.
We consider each of these in turn.

Shared variables require that concurrent units, wshing to
communi cat e, be operating on a single processor, on a
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tightly-coupled nultiprocessor, or on a nultiprocessor system
with shared nmenory areas. Such arrangenments enabl e processes to
synchroni ze access to the sanme nenory area where the processes

can pass signals and data values to each other. Shared nenory
IS a necessary prerequisite for a variety of synchronization
schenes, such as semaphores, spin |ocks, nonitors, and
conditional critical regi ons. To acconmpdate distributed

systens, shared nenory nust be replaced by a nessage passing
mechani sm

Message passing conmes in two general forns: synchronous,
sonetinmes call tightly-coupled, and asynchronous, sonetines
call ed | oosely-coupl ed. Synchronous nessage passing requires
that the sender of a nessage cannot continue after sending the
nmessage, but instead waits until the nessage can be accepted by
the receiver. Two variations of synchronous mnessage passing
exist. One requires the sender to wait only until the receiver
accepts the nmessage. The other variation requires the sender to
wait until the receiver replies to the nessage. (Another conmmon
variation allows the sender to continue unless the sending
channel is full. This wvariation falls sonewhere between
asynchronous and synchronous nessage passing.) Synchr onous
nmessage passing nodels wusually require that communication be
poi nt -t o- poi nt . Synchronous nessage passing inplies that
nessage delivery is reliable, or else the sender night becone
deadl ocked waiting for a reply.

Asynchronous nessage passing disconnects the activities of
the sender from those of the receiver by supplying a queue to
buffer messages until the receiver is ready to process them
The sender of an asynchronous nessage can transmt the nessage
and continue processing regardless of the state of the receiver.
When defining asynchronous nessage passing schemes three issues
must be consi der ed. First, the comunications nodel nust be
est abl i shed. Is each nessage sent to only one addressee
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(unicast), or can nessages be sent to groups (nulticast) or to
every addressee (broadcast)? Is each nmessage an unrelated
transm ssion, or is a reply expected for each nessage?

The second issue to consider when defining an asynchronous
nmessage passing schene is the properties that the communications
can exhibit. W1l each nessage between a given sender-receiver
pair be received in the sequence that it was sent? Can nessages
be loss, or are they guaranteed to be delivered eventually? |If
delivery is not guaranteed, can |oss be detected? Corrected?

WI|l every nessage be delivered as sent? |If nessages can be
damaged, can the damage be detected? Corrected? Is every
nessage guaranteed to be delivered once only? If duplicate

nmessages m ght be delivered, can they be detected? Elim nated?

The third issue to consider when defining an asynchronous
nessage passing schenme is the possibility of expedited, or
express, nessages. Can certain nessages be designated to
by-pass the normal communication channel between a sender and
receiver, possibly junping ahead of previously sent, nessages?
Can such expedited nessages interrupt the receiver? And, of
course for expedited nessages, the issues of addressing nodel
and comruni cati on properties nmust al so be consi dered.

Anot her form of nessage passing, the renote procedure cal
(RPC), insulates the programrer from the fact that an invoked
procedure is in inside another process’ address space, and
possibly in another conmputer on a network. In fact, the RPC is
a restricted form of synchronous nessage passing. Wen a renote
procedure is called, the caller yields control, just as though

invoking a local procedure, but a library routine and Kkernel
function nust intervene to create a nessage, fill in the
operation and paranmeters of the procedure call, and send the
nmessage, through an RPC client, to the correct RPC server. The

RPC server receives the nessage, extracts the operation and
paraneters, and invokes the correct |ocal procedure. When the
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procedure is conpleted, the return call is routed through the
operating system kernel to an RPC client, where a reply is

created and returned to the correct RPC server. The RPC server
will extract any return values and fornmulate a return statenent,
then the waiting process will be awakened and proceed from the

poi nt of suspension, as though the call had been to a |ocal
procedure.

Synchroni zati on Met hod. For distributed systens, the only
means of synchronization available 1is synchronous nessage

passing or renote procedure calls; however, for (general
concurrent processing systenms a full range of synchronization
met hods may be built atop shared vari abl es. Here we consider

such shared-nenory, synchroni zation nechani sns.

A sinple, fine-grained synchronization nethod reserves a
single variable, <called a lock, that can be shared by all
processes. Each process waits for the lock to be false, sets
the lock to true, executes in the critical section, sets the
lock to false, and continues processing outside the critical
section. In the sinplest incarnation, processes sinply spin in
a tight, busy-wait loop until they acquire the |lock. O course,
when many processes are awaiting the sane lock, a fair sharing
algorithm is required to prevent the starvation of any one
process.

Semaphor es provide a nore sophisticated basis for
synchroni zation schenes than do | ocks. Locks induce
busy-waiting loops that can be very inefficient, and |ocks
require sonetimes conplex algorithnms to ensure fair access.
Semaphores conbine wait queues with a variable to elimnate
busy-wait polling and to provide the basis for a built-in fair
access. The binary semaphore operates much as a |ock, but
W t hout the busy-wait polling. A general semaphore allows the
guard variable to take on positive integer values, ordering
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processes on the wait queue to provide first-conme, first-serve
access.

Condi ti onal critical regi ons ( CCRs) ext end t he
synchroni zati on available with semaphores by providing sinpler
mechani snms that are easier to program A nanmed resource can be
protected by enbedding it inside a region block. Mut ual
exclusion can then be guaranteed by ensuring that execution of
region bl ocks that name the sane resource are never interleaved.
In addition, conditional synchronization can be included by
addi ng Boolean conditions onto the region statenents. Wi | e
CCRs are easier to program than semaphores, CCRs are also |ess
efficient and, thus, are not widely used in practice. CCRs do,
however, open a pathway to another synchronization method:

nmoni tors.
Monitors, passive guard nodules, overcome the limtation
that shared variables nust be global to all processes in a

system Monitors can provide nore structure than CCRs, yet can
be inplenented nore efficiently than senaphores. Moni tors
encapsul ate abstract resources and provide a specific set of
operations visible to other processes that wish to access the
resour ces. Mut ual exclusion is provided by ensuring that
execution of the operations wthin the sanme nonitor do not
overl ap. In effect, the synchronization mechani sns are hidden
inside the nonitor’s operations.

Anot her form of synchronization is the rendezvous. The
rendezvous allows a task to await conditionally any of several
events, or operation types. Wen one of the awaited events
occurs, and any associated guard condition is satisfied, the
processi ng associated with that event is invoked. I f more than
one of the awaited conditions is satisfied by an arriving event,
only one is chosen nondetermnistically. Somet i nes, a
scheduling clause is added to renobve the nondeterm nism
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Al'l of the synchronization nmechani sns we have di scussed can
lead to deadlock, if the condition or event awaited never
occurs. To avoid such problens, synchronization schenes can be

augnented with a tinme-out feature. In effect, a process waits
for an event or condition, but specifies that it will only wait
for period of tine. When the period expires, the process is

awakened even though the awaited condition did not occur.

Atom city. To ensure consistency of shared information, a
process may require that certain operations execute atom cally.
For exanple, on a conputer, a typical machine instruction cannot
be interrupted in the mddle of execution, or, in an operating
system certain sequences of statenents nmay execute wth
Interrupts disabl ed. In concurrent object systens, four
approaches exist to satisfy this requirenent. One approach
serializes access to an object, so that each operation invoked
executes to conpletion before the next operation is accepted. A
nore |iberal approach, supported in sonme systens, |ocks out only
those operations that cannot safely execute in parallel with the
current operation. For exanple, an object that is performng a
conputation to return a value mght accept other access
operations in parallel, but lock out access operations once an
update operation begins. A third atomcity approach relies upon
the conpiler to analyze the code and determ ne which regions
must be executed with exclusion and to generate appropriate
I nstructions that enable the run-tine system to enforce nutual
exclusion where required. A fourth approach incorporates atomc

bl ocks into a progranmm ng | anguage. The programmer nust then
use these constructs to protect critical regions within the
code.

Life Mdel. The life nodel of an object enconpasses three
aspects: birth-death, working life, and nenory. A system of

obj ects can be configured statically so that, when the systemis
| oaded into conputer nmenory, all the necessary objects exist and
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are preconfigured. This approach mght be wuseful for a
real -tinme system with fixed capacities in nenory and processing
time. By preconfiguring a system of objects, there is no danger
of exhausting nenory and the system operates wthout the
overhead of allocating nenory and initializing objects. Mor e
cormon is a dynamic approach where all objects are created
during run-time and destroyed when they are no |onger needed

In fact, many object-oriented |anguages nodel program execution
as creation of a root object; once the root object is conpletely
created, the programis term nated. Sone dynam c object systens
enable all or subset of objects to be nobved to persistent
storage from which they can be recalled, state in tact, and
executed in the future. The static approach is a restricted
form of rebirth from persistent storage, except that each birth
finds the object in the sanme initial state. Rebirth of a
dynam c object systemw Il find the objects in the sane state as
when they were noved to storage. O course, there is no reason
that a static object system cannot be interrupted, noved to
persistent storage, reloaded, and resunmed from the point of
i nterruption.

Wi | e execut i ng, an obj ect can be st at el ess or
state-driven. St atel ess objects are anal ogous to mathenatical
functi ons. No concurrency protection is required for stateless
obj ect s. State-driven objects nust be executed atonmically and
sequentially, unless sonme sophisticated scheme for concurrency
is inplemented by the |anguage, run-time system and/ or
progr amer.

An object nmy possess persistent or transient nmenory.
Persistent nenory enables an object to exist across program
executions, or to be restarted without |loss of state after a
system crash. Transient nenory requires that each tine an
object is invoked initial conditions nust be established.
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Know edge-sharing Mbdel. oject-oriented systens enable
new objects to be derived from existing objects by sonme form of
know edge- shari ng. The usual form of know edge-sharing in
object-oriented systens is inheritance. \Wen an object (child)
inherits from another object (parent), the child obtains every
attribute and feature of the parent. (A child can inherit from
multiple parents, obtaining the union of the attributes and
features of all the parents.) The child may then renane and/or
redefine (subject to the rules applicable in the specific
| anguage) any of the features and attributes inherited.

Anot her approach to know edge-sharing, delegation, occurs
when one object knows about a proxy object.*® At run-tinme, an
object will delegate to its proxy operations that it does not
under st and. (This nodel assunes that the proxy is sonehow nore
general, or has nore know edge.) |If the proxy cannot understand
the nessage, then it can delegate it to its own proxy, and so
on. This nessage forwarding occurs at run-tinme, nmuch as is the
case for Smalltalk, leading to possible inefficiency when
conpared with inheritance (a conpile-tinme mechani sm

The query-recipe scheme turns delegation on its head.
Rat her than del egating an unknown nessage, an object w Il ask
its proxy for the recipe, or nmethod, to process the nessage.
This approach can lead to transm ssion of |arge nessages. Sone
alternatives to sending the nethod from the proxy to the
requester exist, but, in general, these alternatives lead to
deadl ock, which can be avoi ded only be sendi ng many nessages. "’

A fourth approach to know edge-sharing is to inplenent
i nheritance in distributed objects by sinply copying all
features and attributes fromthe parent to the child every tine
the child is created or conpiled. (Note that under nornma
circunstances, where objects are in the sane process, only
references to nethods need be copied during inheritance.) This
will create large objects. Also, once the inheritance is
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copied, any changes to the parent object will not be reflected
automatically to the child.

Exception Mbdel. Some object-oriented nodels allow certain
exceptions to be caught. In general, when a nodel allows
exceptions to be caught, the operation causing the exception can
be retried after sone action is taken to resolve the cause of
t he exception. Sonme nodel s enabl e exceptions to be caught, but
only so that the object can be returned to a known consistent
state; in these systens, operations causing exceptions cannot be
retried.

Whet her an exception is unhandl ed because the programmer
chooses not to catch it, or because no retries are allowed, or
because the specific exception could not be caught, sone
notification of the unhandl ed exception is needed. Many obj ect
nodels sinply notify the caller, or nessage sender, that the
exception occurred. More sophisticated nodels allow the
programmer to specify conplaint addresses for each operation.
When an unhandl ed exception occurs, notification is sent to the
appropriate conplaint address. A simlar approach notifies a
known proxy, specified for each object, when an unhandled
exception occurs.

B. Distribution

Distribution inplies concurrency; thus, for a distributed
object system all of the issues we identified, classified, and
di scussed above apply. In addition, an equally large set of
issues nust be considered when a system of objects is
di stri buted. These additional issues are illustrated in the
taxonony shown in Figure I11-2, and are di scussed bel ow.

Cooperation  Mdel. Wthin a distributed system
conputation is acconplished through sone form of cooperation
between two or nore active, independent processes. Vari ous
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nodel s exist for cooperation anobng processes in distributed
syst ens.

The client-server nodel extends function and subroutine
calls across a conputer network. A caller, needing to access a
renote procedure, calls a local client which packages a nessage

and sends the nessage to a renbte server. The renote server
transforns the nessage into a |ocal procedure call. The return
or reply, flows back to the original caller. The client-server

nodel is easy for programmers to understand and work w th, but
other nodels can provide nore flexibility in a distributed
envi ronment .

The peer-to-peer nodel treats conmmunication between two
distributed processes as an interactive dial og. CGenerally, two
processes establish a connection with each other and then
exchange data in both directions simultaneously. Peer -t o- peer
comuni cation, simlar to human conversation across a tel ephone
connection, is efficient when large quantities of data nust be
exchanged between two processes, for exanple, during a file
transfer operation, or when two processes nust interact quickly
over a prolonged period, for exanple, during a process contro

appl i cation. The peer-to-peer nodel, while nore flexible than
the client-server approach, limts comrunication to two parties.
The distributed transaction nodel enables a process to
i nt eract sinmultaneously wth nmany other processes in a
distributed system A nmaster process, responsible for
processing a transaction, can interact wth nmany other
processes, each being delegated a portion, or subtransaction, of
the job. The master process nust ensure that either all
subt ransacti ons are conpl et ed or t hat none of t he
subtransactions is conpleted. In effect, the nmster process
ensures that the transaction is atomic, consistent, indivisible,
and recoverable. As a general approach, the distributed
transaction nodel 1is recursive, S0 every subtransaction may
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spawn addi ti onal subt ransacti ons, form ng a distributed
transaction tree wth the initiating process at the root.
Di stributed transacti ons are cunber sone, conpl ex, and
inefficient, but they provide a huge increase in functionality
when conpared with either the client-server or peer-to-peer
nodel .

Two ot her cooperation nodels are sonetines used, although
in restricted applications. The broadcast nodel, where a
processes sends one nessage that is copied to every other
process in the distributed system is sonetines wused to
distribute global events, or to distribute information to
everyone, in the absence of an explicit destination address,
expecting the intended addressee to process the nessage and
others to ignore it. Probably the nost conmmon use of broadcast,
limted to a |ocal area network segnent, is address resolution
Address resolution is required when a nessage, containing a
destination nane, arrives from outside a |ocal network. The
receiving node, if the destination nane is unknown, wll
broadcast a small nessage on the |ocal area network asking:
"Does anyone recognhize this destination nane?" If a specific
node recogni zes the name, the node replies: "Send any nessages
for the destination name to this address.” Because the
broadcast nodel does not require a reply, broadcast nessages
need not arrive at every destination. In the context of
wi de-area networks, broadcast operations are expensive, SO
practical wuse of the broadcast nodel is Ilimted to |ocal
networks. A simlar, but nore efficient, multicast nodel can be
appl i ed outside of |ocal networks.

The rmulticast nodel enables groups of processes to be
formed and then labeled with a group, or nulticast, address.
Whenever a nessage is sent to the group address, everyone in the
group will be given a copy of the nessage. (When a group
i ncludes every address in the system then the nulticast node
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is the broadcast nodel.) The nulticast nodel is sonetinmes used
in electronic mail applications (to enbody nmailing lists) or in
command and control applications. As with broadcast, nulticast
nmessages are not guaranteed to be delivered. A nore reliable
nodel, nulti-peer, is the subject of research

Mul ti - peer conmunication enables a process to establish a
single conmunications channel with rmnultiple destinations. In
one nulti-peer nodel, each nessage sent by a designated channe
master elicits an acknowl edgnent fromthe nultiple slaves. This
nodel has been inplenented in several experinents involving
one-way, reliable, nulticast transm ssions over satellite links.
The general utility of the nodel has yet to be proven.

M gration Mbdel . In object-oriented distributed systens,
know edge nust be shared between objects that may be renote from
each other. For exanple, an object may need to invoke a nethod
in a renote object, or access data from a renote object. Rather
than placing objects in a fixed location and then relying solely
on renote procedure calls for information sharing, sone recent
research seeks to address these issues by allowng objects to
nove around in a distributed system Sever al novenent
strategies, or magration nodels, are being investigate.

One migration nodel replicates object class code throughout
the network and then noves specific instantiation data between
nodes when renbte access is required. Thi s approach elimnates
novenent of |arge code segnents during run-tinme (the code nust
be distributed after each conpilation) and can ease the problem
of transformations required to nove information in a
het er ogeneous net wor k.

A second mgration nodel noves a copy of the client object
to the node where the appropriate server is operating. Thi s
approach is usually Iimted to a honogenous network. A related
approach noves the server object to the node where the client
resi des.
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No matter what mgration nodel is advocated, the actual
novenent of objects can be controlled by the system or managed
by the programrer. Nei ther of these control approaches has
proven superior to the other, because noving objects around in a
system of distributed nodes, no matter how the novenent is
managed, remains a research problem with nmany conpl ex aspects.
What will be the performance effects of noving objects around
the network? Wat happens when each object in a series of calls
iIs on a different node? \Wen can objects be replicated? How
will the global state of all object |ocations be reflected? How
will heterogeneity of conputer architectures, object |anguages,
and run-time systens be accommobdated? W find object mgration
to be an active research area.

Encapsul ati on Met hod. When an existing service, available
in a network, nust be incorporated into a distributed object
nodel, a method nust be selected to encapsulate the existing
service inside of an object. At present, two nmethods exist: 1)
a new interface to the existing service can be hand-coded in
sonme object-oriented |anguage or 2) a new interface to the
existing service can be defined using an interface definition
| anguage, a supporting conpiler, and an object adapter. The
first approach is well wunderstood, but l|limted because a new
interface nust be hand-coded for each new object-oriented
| anguage that w shes to access the existing services. The
second approach, provided the interface definition |anguage is a
w dely supported standard, allows the nmapping between an
existing service and an object-oriented interface to be carried
out once. Then, clients wishing to access an existing service
can encode there interface using the same interface definition
| anguage. To allow the interfaces to be supported in nultiple
object-oriented |anguages, object adapter |ibrary routines nust
be witten for each object-oriented [|anguage. Certainly,
encodi ng t he obj ect adapt er routines once for each
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object-oriented |anguage is nore efficient than hand-coding an
interface in every object-oriented |anguage for each existing
service that nust be encapsul at ed.

Nam ng, Addressing, and Locating. To access objects in a
distributed system each object nust have an identifier that is
unique within the scope of the system Further, when an
object’s identifier is known, a nmeans nust exist to locate a
specific object corresponding to the known identifier. Oten, a
distributed systemis limted by the form and semantics of the
identifiers available in the system

bj ects can be identified by a name, an address, or a type

ref er ence. A nane identifies an object independent of its
| ocati on. An address identifies an object inplicitly by
specifying where the object is |ocated. Normal Iy, when an

object nane is known, the nanme nust be turned into an address.
From an address, the distributed system should be able to | ocate
the naned object. In nost object systens, a type reference
identifies an object within a certain class. Usually, a type
reference can be resolved into the address of a specific object
of the naned type. In practical terns, an object is requested
by nanme or type reference when the object is created, and an
address is returned fromthe creation call. Fromthat point on

the object is referenced by the address. (OF course, in systens
where objects nove, the address may be logical rather than
physi cal .)

Whet her names, addresses, or type references, identifiers
exist within a geographic, or topological, scope and a tenpora
scope. Wthin the bounds of the system geography, an identifier
must be unique; nanes and addresses nust map to objects on a
one-to-one basis and type references nmust nmap to classes on a
one-to-one basis. In general, nanes and type references are
| ong-lived, while addresses live only fromthe tinme an object is
i nstantiated until the object is noved or destroyed.
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Wthin a distributed system a neans is needed to obtain
and assign identifiers. Whenever an object or object class is
decl ared, a unique nane or type reference, respectively, mnust be
obtained and assigned to the object. Whenever an object is
I nstanti ated, a unique address nust be obtained and assigned to
t he obj ect instance.

As if obtaining and assigning nanes and addresses in a
distributed system were not difficult enough, once the
identifiers are assigned, sonme nechanism nust enable the
know edge of specific identifiers to be shared. One such
mechani sm encodes a set of known acquaintances into the
decl aration of each object. This initial set of acquaintances
permts the object to exchange nmessages with other objects after
I nstanti ation. Wi | e exchangi ng nessages, an object may nake
new acquai ntances, thus w dening the scope of its conmunity.
When acquaintance lists are used, the identifiers nust be
addresses. A less restrictive mechanismrelies on a nediator.

A nediator can be queried with an object name or a type
reference. The nediator wll |ookup the appropriate object that
mat ches the query and then, providing the name or reference is
valid, return the associated address to the requester. The
nmediator mght be a nane resolver, a directory server, or an
obj ect request broker.

Het er ogenei ty. Wen a distributed system consists of
I dentical conputers, running the same operating system an
entire class of issues can be ignored; however, in the nore
general case of heterogeneous conputer systens, inconpatible
data formats nust be resolved, inconpatible comunications
protocols nust be elimnated, and applications progranmm ng
interfaces (APIs) nust be selected to enable application
prograns to be noved between conputers. These issues can best
be resolved by establishing standards for data formats,
communi cations protocols, and APIs. Fortunately, progress is
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bei ng nade toward standards in these areas. Unfortunately, nust
researchers who are investigating distributed objects ignore the
i ssues surrounding heterogeneity, assuming instead that al
conputers on their networks are honbgeneous. Researchers within
the conputer industry who are investigating distributed object
envi ronnments assune that heterogeneity is a prinmary concern that
nmust be addressed.

Repl i cati on. Wthin distributed systens, replication of
information is used to decrease network congestion, to increase
responsi veness, and to increase fault tolerance. By mrroring a
copy of system nenory on a disk, a node can recover and restart
fromthe point of interruption after a crash. |In nore critica
applications, one or nore nodes can be assigned to shadow
anot her node so that, should the shadowed node fail, a shadow ng
node can pick up the processing responsibilities inmmedi ately and
correctly. This node of operation is sonetinmes called
hot - st andby.

A sinple strategy to inprove responsiveness allows each
node to cache information, obtained renotely, so that subsequent
calls can be processed from a |ocal data store. Cachi ng
approaches raise a nunber of issues, such as the granularity of
i nformati on that should be passed with each renote request, the
met hod of determ ning that cached information may be invalid or
stale, and the nethod for wupdating cached information held
t hr oughout the network.

No matter which specific replication scheme, mrroring,
shadowi ng, or caching, is used, the process nust be nmanaged.
Sonme systens enable the progranmmer to manage replication, while
others build replication nmanagenent into the run-tinme system

Security. System security, an issue for any conputer
operating system takes on increased inportance in a distributed
envi ronnment because each conputer in a network is open to
attenpted access by unknown users and because nessages sent
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bet ween conputers nmay be altered or copied by unauthorized
users. To protect distributed computing systenms, two issues
nmust be decided: 1) the granularity of protection and trust and
2) the specific security services provided.

In a system of distributed objects, the issue of protection
granularity is interesting. Shoul d access to an object be
protected or should access be restricted on a nethod-by-nethod
basi s? Shoul d nessages between objects be protected or should
protection be restricted to specified paraneters in the
messages? Should the object nature of the distributed system be
ignored, leaving security granularity at the |evel provided for
any systemon a network?

An issue that conplenments the granularity of protection is
granularity of trust. Gven sone decisions about what is to be
protected, what are the entities that should be authenticated,
and then trusted according to that authentication? In
distributed systenms, processes can be authenticated on behal f of
users, network nodes can be authenticated on behal f of processes
running on the node, and specific conmmunications between nodes
or between processes mght be authenticated individaully. What
about an object-oriented distributed systen? Should each object
be authenticated, or are the usual l|levels of authentication in a
distributed system sufficient?

Conmpl enrenting the issues of granularity is the question of
what services to offer. Should authentication services be based
on public keys, or should a third-party authentication service
issue, in real tinme, private keys? Should access controls be
provided at nultiple levels, as opposed to just access okay or
access deni ed? For exanple, for a specified, target object,
shoul d user objects authenticated as system auditors be given
access to special nethods? I f nessages between objects are
pr ot ect ed, should protection include both integrity and
confidentiality? Should these protections be applied to entire
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nessages, to specified fields, or to programer designated
portions of messages? Should these protections be applied to
every message, to progranmer-desi gnated exchanges, or to system
sel ected transm ssions? Shoul d audit services be provided so
that a series of object creations and nethod invocations can be
reconstructed | ater?

V. Applying Objects To Communi cations Architectures

W draw several inplications from the foregoing survey of
approaches to, and analysis of issues surrounding, concurrent

and distributed object systens. First, no existing nodel or
approach to concurrent, di stributed obj ect syst ens is
sufficiently advanced for operational deploynent. Further, the

breadth and conplexity of the issues that nust be solved before
a general nodel of concurrent, distributed object systens is
accepted leads us to conclude that operational deploynent of
such systenms will occur later, rather than sooner. For these
reasons, we expect t hat conventi onal comuni cat i ons
architectures anong | oosely-coupled, het er ogeneous conput er
systens will play a growi ng operational role, as the nunber of
conmputers and networks deployed continues to increase. Thi s
reasoning |leads us to consider how object-oriented techniques
m ght be enployed to reduce the conplexity, to inprove the
reusability and extensibility, and to increase the performance
of convention conmuni cations architectures.

In the followi ng sections we denonstrate how the concept of
abstract data types (ADTs) can be used to specify the services
provided by a layer within the Open Systens |nterconnection
(OCsl) Reference Mddel. W use as our exanple the OSI transport
| ayer, the fourth of seven |ayers described in the OSI Reference
Model . We t ake as our starting poi nt t he oSl
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Connection-oriented Transport Service Definition®, a 31-page
i nt ernati onal standard (1S 8072) that <describes the Csi
connection-oriented transport service through text, tables,
state diagrans, and event sequence diagrans. W extracted the
semantics of IS 8072 and represented them in only 11 pages (see
Appendi x A), as an ADT using the Eiffel notation.

Wiile the Eiffel ADT successfully captured the senmantics of
IS 8072, we found the result to be inpractical for use as an
application progranm ng interface (API). The ADT captures sone
details that would normally be hidden from an application
progr amer . The ADT also is restricted to interactions between
a single transport service wuser and a transport service
provi der. This client-server relationship is sonewhat
unreal i stic because the transport service involves peer-to-peer
i nteractions between two users through the transport service.
Figure V-1 illustrates this issue.

Each instance of the OSI connection-oriented transport
service is provided over a full-duplex connection that is
est abl i shed between two users. In Figure V-1, the full-duplex
channel between two transport service users is represented by
two sinplex channels, one from User A to User B and the other
fromUser B to User A IS 8072 requires that such a connection
be established by only one of the wusers (the connection

USERA
/4»1{*",1;:\\\ I Tt
Transport ///Requeﬂs Indications:, ,// Requests Indications “\ Transport
Sevice . Confirms ‘. Responses - Service
Interface ~~__ 1 - R (7//,/’ Interface

Channel from B to A

Channel from A to B
TRANSPORT SERVICE PROVIDER

Figure IV-1. The OSI Connection-oriented Transport Service
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initiator). In Figure V-1, User A wuld send a connect request
(CR) to User B which would arrive at User B as a connect
i ndi cati on. User B, if accepting the connection, then issues a
connect response which arrives at User A as a connect confirm
Once the connection is established, the Users operate
i ndependently and symetrically with each issuing various data
requests which arrive at the other user as data indications.
The interactions can continue until either user decides to end
the connection by issuing a disconnect request, which arrives at
the other wuser as a disconnect indication. The Transport
Service Provider relays the requests and responses between the
users and ensures that various service guarantees are achieved.

An  ADT for the OSI transport service specifies the
I nteractions between a wuser, or client, and the transport
service provider, or server. As can be seen in Figure IV-1, two
transport service interfaces exist, one between User A and the
provi der and the other between User B and the provider. A user
may access the transport provider in either of the two roles,
but not in both sinmultaneously (unless the user operates in
| oopback nobde, in which case the user is still acting as two
users and woul d have to be specially constructed).

An application programring interface (API) m ght be
concerned not only with interactions between the provider and
the user, but also between the |ocal and renote user. In fact,
the API mght be interested solely in the interaction between
the two users. The ADT given in Appendix A does not capture the
i nteracti on between users. For this reason, we defined a second
Eiffel description of the transport service (see Appendi x B)
that is intended to provide an API.

Both the ADT and APl were witten in Effel (version 2.3)
and conpiled on a UNIX system W then noved the conpiled code
to a Mcrosoft Wndows system and used word-processing software
to inprove the appearance of the code. In both Appendix A and
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B, we show the Eiffel keywords in bold. Cl asses that we have
defined are shown in CAPITAL, BOD, |ITALICS. (Built-in Eiffel
cl asses are shown in BOLD CAPITAL letters.) We assigned line
nunbers to each listing so that the reader can relate the
follow ng discussions to the appropriate statenments in the
Eiffel code.

W first discuss the ADT for the OSI transport service
interface. W then describe the API for OSI transport users.

A An Abstract Data Type for the QOSI Transport Service Interface

Qur abstract data type (ADT) for the OSI transport service
interface is shown in Appendix A as the Eiffel deferred class
TS | NTERFACE (lines 1 to 285). Each exported feature, except
expedited_al |l owed, corresponds to an abstract transport service
primtive defined in IS 8072. The expedited_ allowed (line 22)
feature indicates whether or not expedited data can be sent
across the transport connection. (Each transport connection can
send regular data, but the possibility also exists to send
expedited data which can leapfrog the normal flow contro
associated wth regular data. Expedited data facilitates
sending of interrupts across a transport connection.)

IS 8072 defines a snmall (four states and eight transitions)
finite state machine (FSM that controls the types of service
primtives that may be issued by the transport service user and
provider at any point during the life of the connection. Thi s
FSM is represented by the hidden feature TS Interface (line 14)
of the class TC STATE (lines 289 to 311). The transport service
interface can be in one of four states (idle, outgoing
connection pendi ng, i ncom ng connection pending, or data
transfer ready). The state of the interface is wused in
preconditions to the service primtives to prevent the
primtives frombeing issued at the wong tine.
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The hidden features now (line 16) and tine_sent (line 18)
are used to provide tine-stanps for certain operations and to
access the current tine. (One, perhaps unrealistic, assunption
made by us is that a global clock exists and can be accessed to
provi de synchronized tinme.) TS User_Invoked (line 20) provides
a value that can be inserted into the reason field of a
di sconnect request when the transport service user initiates a
di sconnect. This allows wuser-initiated disconnects to be
di stingui shed from provider initiated disconnects.

'S 8072 describes the transport interface as consisting of
a full-duplex <channel (usually represented as two sinplex
channels running in opposite directions) between two transport
service users. IS 8072 also specifies that certain requests
Issued by a transport service user can overtake and even cause
del etion of other requests while they are still in the channel.
The rules describing how this can occur also specify that these
operations are optional and wunder control of the service
provider. To allow our ADT to represent these rules, we nodel ed
the channel between the transport service user and provider as
six sinplex channels (three for inbound objects and three for
out bound objects), as shown in lines 24, 26, and 28. The
CHANNELs (lines 330 to 345) cd_in and cd _out contain CTL_ BLOCKs
(l'ines 347 to 373) which include connect requests (CRs), connect
confirms (CCs), and disconnect requests (DRs). In effect, these
are connection nmanagenent nessages. The DRs can potentially
destroy normal and expedited data that is en route to transport
service users, but not yet delivered.

The CHANNELs dt _in and dt_out contain normal data, called
transport service data units (TSDUs, lines 377 to 394) sent by
and arriving for, respectively, the transport service user. The
remai ning pair of CHANNELs, ed_in and ed_out, contain expedited
data (E_TSDUs, lines 397 to 412) leaving from and arriving for
the transport service user.
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Al'l nmessages crossing the transport service interface nay,
and sonme nust, contain data which we represent as a DATA class
(lines 415 to 421) consisting of a count and val ue
( ARRAY[ CHAR] ) . Each type of nessage we represent (CTL_BLOCK,
TSDU, E TSDU contains paranmeters in addition to DATA -- the
specific paranmeters, represented as features in the appropriate
class, correspond to paraneters defined in 1S 8072 or to
paraneters needed to guarantee the service defined in IS 8072.
W w il cover each paraneter, as necessary, in the subsequent
di scussi on.

The transport service interface is initiated when a
transport service user, her eaft er USER, i nvokes t he
T _CONNECT _request feature (lines 30 to 57) to attenmpt to
establish a connection, via the transport service provider,
hereafter PROVIDER, to a renote user. W will describe this
feature definition in some detail so that the reader may
understand the major points of the remaining features on his
own.

The first paranmeter in the T_CONNECT request, |Invoker,
(litne 30) is an invention of our own. I nvoker is of class
IDENTITY (lines 313 to 327) which sinply distinguishes the
service provider (isPROVIDER) from the service user (isUSER).
This is necessary because IS 8072 indicates that certain of the
service primtives (represented by us as Eiffel features in the
class TS INTERFACE) may only be issued by the service user and
others may only be issued by the service provider. In effect,
our ADT is an entity that is shared by a transport service user
and a service provider -- we have represented TS I NTERFACE as a
server to multiple clients, each of which is allowed to use
certain features in a controlled manner.

The remaining parameters in the T_CONNECT_request are
extracted directly fromIS 8072. W have represented the Call ed

55



and Calling fields as an ADDRESS class (lines 455 to 459) and
the Quality_of _Service fields as a Q0S class (lines 430 to 434).

Exam ning the preconditions for the T_CONNECT_request
(lines 37 to 42) we find that the invoker of this feature nust
be the USER, that the interface nust presently be idle, that the
called and calling addresses and quality of service nust be
provided, and that the user data is optional, but if present
nmust be between 1 and 32 bytes in length. Wth the exception of
the invoker identity (previously explained) all of the
precondi tions represent specifications fromI|S 8072.

The post-conditions for the T_CONNECT request (lines 46 to
55) speci fy what the feature ensures, gi ven that t he
preconditions were satisfied. The main post-conditions
specified fall into three categories: 1) a CIL_ BLOCK is placed
in cd_out, 2) the expedited option requested by the USER is
recorded in the expedited allowed feature, and 3) the interface
state is changed to outgoing connection pending. Regar di ng the
object placed into cd_out: the count of objects in the channel
Is increased by one, the type of object is a CR and the USER
provi ded paraneters are mapped into the CR object.

The reader should be able to follow the other features
related to connection establishnent. The T_CONNECT_i ndi cati on
(lines 59 to 82) is issued by the PROVIDER to signal an arriving
CR. The preconditions require that the first object in cd_in is
the CR and that all paraneters were mapped from that CR to the
feature call. The post-conditions indicate that the CR was
renoved fromcd_in, that the incom ng expedited option is saved,
and that the interface state is changed to incom ng connection
pendi ng.

After receiving a T _CONNECT indication and deciding to
accept that connection, the USER issues a T_CONNECT response
(lines 87 to 116). The interpretation of the pre- and
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post-conditions is simlar to that for a T_CONNECT request, but
a CC object is placed in cd_out.

When the PROVIDER issues a T_CONNECT confirm (lines 118 to
142) to a USER the interpretation of the pre- and
post-conditions follow along the lines of that given for the
T _CONNECTI ON i ndication. The result of the T _CONNECT confirmis
that the USER is in the data transfer ready state and that the
expedited option for the connection has been finally established
(this is defined in IS 8072 as a sinple negotiation).

Once in the data transfer ready state, a USER may invoke
repeatedly the T_DATA request feature (lines 144 to 162) and the
PROVIDER may invoke repeatedly the T _DATA indication feature
(lines 164 to 185). Each T _DATA request requires that sone
associ ated DATA exist. The post-conditions ensure that the
outgoing TSDU is stanmped with the tine, nunbered in the sequence
sent and placed in dt_out. The tinme-stanp and sequence nunbers
are checked in the preconditions of T _DATA indications to verify
that the PROVIDER yielded the service specified in IS 8072
(i.e., the data will be delivered, after sone finite delay, in
the order sent, wthout danage, wthout gaps, and w thout
duplication). The post-conditions for the T_DATA indication
ensure that the arriving data is renoved fromdt _in.

If expedited_ allowed is true, then the USER may issue
T_EXPEDI TED DATA requests (lines 187 to 208) and the PROVIDER
may issue T_EXPEDI TED DATA indications (lines 210 to 234). The
main outline for these features is taken from the corresponding
T_DATA request and T_DATA indication features, but two winkles
are added (because of requirenents included in IS 8072). First,
expedited data nust be between 1 and 16 bytes in [|ength.
Second, any expedited data received nust be received before any
normal data sent after the expedited data. (Frankly, we find
this definition of expedited to be less than satisfactory -- in
effect IS 8072 guarantees that expedited data won't get treated
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any worse than normal data, but encourages the PROVIDER to push
the expedited data ahead of any normal data that is not yet
delivered.)

The final features, T_DI SCONNECT request (lines 236 to 259)
and T _DI SCONNECT indication (lines 261 to 283) deal wth
connection termnation. A DI SCONNECT _r equest, which may
optionally include data, may be issued by the USER when the
interface is in any state except idle. If the request includes
data, the data nust be between 1 and 64 bytes in length. At the
end of the T _DI SCONNECT request, the post-conditions ensure
t hat: all incomng channels (cd_in, dt_in, and ed_.in) are
enpty, that the interface is idle, that any objects already in
out goi ng channels (cd_out, dt_out, and ed_out) mght be deleted
(but they need not be because |S 8072 leaves this to the
PROVIDER s discretion), and that the last object in cd out is a
DR with a reason_code of TS User I nvoked.

The T_DI SCONNECT i ndi cation can be invoked by the PROVI DER
at any time when the interface is not in the idle state. The
T_DI SCONNECT i ndi cation ensures that the interface is idle and
that all incom ng and outgoi ng channels are enpty.

These twelve features conprise the TS Interface ADT, an ADT
that captures the OSI Transport Service Defintion as enbodied in
IS 8072. Wiile this ADT works well as a specification of the
transport service, the odd arrangenent of two clients (the USER
and PROVIDER) conmmunicating through one server (the ADT)
provides an unconventional application progranmng interface

(API) . For this reason, we specified the OSI Transport Service
Definition, again using Effel, in a different style that is
nore conventional for programmers. In addition, we tried to

capture the relationship between actions taken by the two
correspondi ng users across the transport service. At the sane
time, we dropped sonme of the details, such as quality of
service, expedited data negotiation, and wuser data in the
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connecti on nanagenment nessages, that, although included in IS
8072, are not normally inplenented. Qur attenpt at an APl for
the OSI transport service, included as Appendix B, is described
bel ow.

B. An Application Progranmng Interface for the OSI Transport
Service

Qur application programmng interface (API) for the QS
transport service is shown in Appendix B as two main classes:
7S (lines 1 to 216) encapsul ates the transport service provider
and TS USER (lines 223 to 315) encapsulates the transport
service user. We begin our discussion with TS because this
cl ass provides the progranmer’s view of the transport service.

TS exports seven features, each corresponding wth a

service offered by the provider to a user, or client. The
paranmeters provided for each feature are mnimal so as to ease
the programrer’s | ob. The listen feature establishes that a
user is wlling to wait for possible incomng connections. The

connect feature initiates an active connection attenpt by the
transport service provider on behalf of the user. The
di sconnect feature termnates the connection. The send and
receive features transmt data and accept any incom ng data,
respectively. The send _expedited and receive expedited are
anal ogous to send and receive, but operate on expedited data.

A user wishing to accept an incom ng transport connection
invokes the listen operation (lines 17 to 33) wth an input
paraneter of class TS USER (lines 223 to 315). The listen
operation requires that the input user is a valid user and that
the wuser is disconnected, and then ensures that the user is
listening or else is connected to another wuser who issued a
connect that arrived while the Ilistening user was being
regi st er ed.
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To actively establish a connection, a user invokes the
connect operation (lines 35 to 57), specifying the local and
renote users; both nust be valid. The |ocal wuser nmnust be
di sconnected and the renote user nust either be [|istening,
di sconnected, or trying. (Qur APl allows for two users
attenpting active connections to be resolved into a single
connection. 1S 8072 forces such a situation to resolve into two
connections; thus, our APl is nore flexible than our ADT on this
point.) The connect operation ensures that either the local and
renote wusers are connected or that the |ocal user is
di sconnect ed.

The disconnect operation (lines 59 to 79) allows the user
to term nate an existing connection. The user nust be valid and
connect ed. The renote wuser nust either be connected or be
di sconnecti ng. (Here again, our APl is nore flexible than our
ADT. IS 8072 requires that data be neither sent nor received by
a user after a disconnect request is issued, but our API, while
preventing a user from sending data after issuing a disconnect,
allows a wuser to continue receiving data after issuing a
di sconnect. This choice was nmade with the view that the sane
APl m ght be used over multiple transport services each of which
operates with slightly different rules.)

The send operation (lines 81 to 107) requires a user and
data (of class TSDU, lines 318 to 342). The user nust be valid
and connected and the data nust exist. The send operation wl|
then ensure that the order in which the data is sent will match
the order in which it is received, that the data is received
after sone finite delay, and that the content received natches
the content sent; or else the wuser is disconnected. These
assurances nmatch the service guarantees of IS 8072 and can be
expressed in conpilable Ei ffel; however, these assurances cannot
be checked in reality because the send operation is not required
to wait until the data is received but can continue, including
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sending additional data. The transport service forns a pipeline
of data that will eventually guarantee an outcone, but wll not
provide an outcone at the tinme of the call. Thus, the ensure
clauses for the send and send_expedited operations should
probably be expressed as coments.

The receive operation (lines 109 to 133) requires a user
and returns a TSDU. The user nust be valid, and connected or
di sconnecting (this situation was described earlier). The
operation ensures that the resulting 7TSDU is void if no data is
waiting to be received. If data is waiting, the returned TSDU
is guaranteed to have been sent earlier, to be received in the
order sent, and to have the sane content that was sent. Her e,
with some small changes to the transport protocol, the first two
assurances can actually be checked, but the latter assurance
cannot practically be eval uated. (Again, part of the ensure
portion of the receive and receive_expedited mght best be
handled as Eiffel coments.) If the expectations of the
transport service would be violated by a receive operation, then
the wuser wll be disconnected. The receive operation is
non- bl ocking, that is, whether data is ready to be received or
not, control wll be returned imediately to the caller.

The operation of the send_expedited (lines 136 to 166) and
recei ve_expedited (lines 168 to 195) features mrror those of
the send and receive features, respectively. One additional
winkle deals with the ordering of the expedited data relative
to normal data. Any expedited data sent is guaranteed to be
received prior to any normal data that is sent after the
expedited. Note also that the expedited data sent and received
Is represented by a class E TSDU (lines 344 to 360).

The second major class, TS USER (lines 223 to 315),
conprising the APl represents the transport service user. In
our description we included a nunber of details, as wll be
explained, and omtted others, such as addresses, quality of
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service, and expedited flags. The omtted details were dealt
with under the ADI and, thus, the reader should be able to
supply them Rat her than passing the detailed paraneters
I ndividually, as specified in IS 8072, we pass a reference to
the wuser object that encapsulates the detail par anet ers
associated with the user.

Each user may be in one of five states; therefore, we
export five features querying the state of the TS USER W also
provide features indicating whether data has been sent and
received, as well as the |last sequence nunber of each TSDU sent
and received. The wakeup operation allows the transport service
provider to alert the user that sonme data or event has arrived
that may be of interest to the user. The wakeup operation,
then, is a suffered operation that nust be inplenented by the
transport user in order to use the transport service. The only
paranmeter of the wakeup operation is a reference to a |ocal
image of the renote wuser wth whom the Jlocal wuser is
conmmuni cat i ng.

Two hidden operations are provided to allow the user to
updat e the sequence nunbers of the TSDUs sent and received. The

Zero feature permts the invariant to conpile. The invari ant
for TS USER is straightforward: sequence nunbers nust be zero
or greater, if a TSDU has been sent or received, then the

correspondi ng sequence number nust be positive, and the TS USER
must be in one of its valid state.

C. Eval uation

The API we described is sinpler, yet nore flexible, than
our ADT for the equivalent transport service, but also I|ess
preci se. Since nost of the post-conditions cannot really be
evaluated at run-time, the APl woul d probably require comenting
out the ensure clauses for several of the operations. W
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i magine that additional thought mght Ilead to a better
expression of the APlI, or, perhaps, the ADT can be adapted to
becone an API.

As a vehicle for specifying the OSI Transport Service,
ADTs, particularly as represented by E ffel, worked well.
Thrity-one pages of text, pictures, tables, and state diagrans
were condensed to eleven pages of Eiffel. Sone of the behavior
that is described as optional in IS 8072 could only be hinted at
indirectly in the ADT. For exanple, the ability of some objects
to overtake other objects at the discretion of the service
provider could not be readily expressed in the ADI. In
situations where anbiguity nmust be introduced into a
specification, natural |anguage is superior to the nathematica
rigor of ADTs. Even so, the ADT we created for the transport
service defines, alnost conpletely, a fairly conpl ex object.

As for wusing Eiffel to define an APl to a distributed,
peer-to-peer service, our success is less clear. W find that
the preconditions are useful to constrain calls on the various
operations; however, we believe that the post-conditions, for
the nost part, <cannot be realized in an actual run-tine
i npl enentation and, therefore, mnmust be included in the APl code
nerely as conments to describe what the programmer can expect.
O course, this may not be viewed as a limtation by Eiffel
adherents because the reconmended conpile-tinme options under
nor mal execution do not i ncl ude t he eval uation of
post - condi ti ons.

W found our experinent with ADITs and Eiffel to be
stinmul ating. More thought wll be required to determne if
object-oriented techniques <can be used to inprove the
specification of comunications architectures, protocols, and
servi ces. Qur early test showed sone promise, as well as the
need for additional |earning on our part.
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V. Concl usi ons

W have considered three trends in information technol ogy:
1) an increasing nunber of cheap, powerful conputing devices,

2) a growing web tying these conputing devices together, either
into |oosely-coupled local and wde area networks or into
cl osel y-coupl ed, massively parallel conputational engines, and

3) a novenent toward object-oriented software systens.
Conbi ned, these trends seem to foretell an era of distributed,

and thus concurrent, systenms of objects, objects spread
t hroughout a network of conputers: communicating, noving,
| ocating one another, fending off unauthorized accesses,
cooperating to satisfy application requirenents, synchronizing
concurrent accesses, and handling exceptions that occur
renotely. Qur survey of approaches to concurrent and
di stributed object systens convinces us that this inpending era
has not yet arrived. No distributed object system is depl oyed
t oday.

Furt her, our assessnent of the issues facing any
depl oyabl e, distributed object system convinces us that an era
of distributed object systenms wll conme later, rather than
sooner. No consensus exists as to the cooperation nodel to be
used anong distributed object systens. Met hods for nam ng,
addressing, locating, and noving objects in a global network
have vyet to be established. Most present research on
distributed object systens ignores the very real issues of
het erogeneity and security. No widely held agreenent exists in

the industry regarding the basic assunptions that should be nade
about the communi cations networks underlying distributed
syst ens. These issues will retard progress toward what could
ultimately become a future of distributed conputing based on
obj ect s. In the neantine, current nethods for comunication
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anong heterogeneous, distributed conputers wll continue to
provide an inportant basis for cooperative processing; and,
per haps, object-oriented software techniques can inprove our
ability to speci fy, pr oduce, use, and mai nt ai n t he
communi cations architectures, services, and protocols necessary
for | oosely-coupled, distributed conputing.

In our paper, we presented a snmall experinment in applying
object-oriented techniques to the specification of comrunication
services. Specifically, we designed an abstract data type (ADT)
for the Open Systens Interconnection (OSI) connection-oriented
transport service (as defined in IS 8072). W then specified
the ADT in Eiffel, an object-oriented progranm ng | anguage. CQur
experiment showed that such specifications are possible, though
we identified sone areas where natural |anguage has advant ages.
Qddly enough, the IS 8072 definition included, purposefully,
some anbi guous statenments - anmbiguity is anathena to ADTs.

One goal of object-oriented progranmng with ADIs is to
specify the semantics and syntax of operations that a programer
can rely upon when using the services of an ADT. Here, we
judged our transport service ADT too restrictive, and, so, we
constructed a separate application programring interface (API)
for the transport service. Qur APl exhibited increased
flexibility when conpared with our ADT, but the post-conditions
in our APl are probably inpractical to evaluate at run-tine.
Perhaps, with nore time and thought, sone adaptation of our ADT
could becone a suitable API, but we are not convinced of that
fact.

Qur experinent with Effel and the OSI transport service
encourages us that object-oriented techniques mght inprove our
ability to specify, construct, use, and adapt communications
architectures and protocols; but nore thought and work is
necessary before we can make such clains. W are convinced that
ADTs can wusefully represent unanbiguous aspects of an OS|
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service interface; however, we are unconvinced that ADTs
|l east as represented in Eiffel) can adequately express
semantics of a peer-to-peer service that extends across
service interfaces.
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Appendix A. Eiffel Abstract Specification of 1S 8072: The Connection-oriented Transport
Sevice Definition

deferred class TS | NTERFACE
-- Transport Service Definition.

export T_CONNECT_request, T_CONNECT_i ndi cati on,
T _CONNECT _response, T_CONNECT confirm
T_DATA request, T_DATA indication,
T _EXPEDI TED _DATA request,
T_EXPEDI TED _DATA i ndi cati on,
T _DI SCONNECT _request, T_DI SCONNECT i ndi cati on,
TS Interface, expedited_all owed

feature
TS Interface : TC _STATE;
now : TIME;
time_sent : TIME;
TS User I nvoked : DIS REASON;
expedi ted_al | owed : BOOLEAN;
cd_in, cd_out : CHANNEL[CTL_BLOCK[DATA]];
dt in, dt_out : CHANNEL[TSDU[DATA]J;
ed in, ed out : CHANNEL[E_TSDU[DATA]];

T_CONNECT_request( Invoker : IDENTITY,
Called, Calling : ADDRESS,
Expedited_Option : BOOLEAN,
Qual ity of Service : QOS,
TS User _Data : DATA
) is
require
I nvoker . i SUSER;
TS Interface.isldle;

not Cal | ed. Void and not Cal | i ng. Void;
not Quality_of Service. Void,
TS User Dat a. Void or else
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(TS User_Data.count > 0 and
TS User Dat a. count <=32);

deferred

ensure
cd out.count = old cd_out.count + 1;
cd out.last.isCR
cd out.l ast.addressl Cal | ed;
cd out.l ast.address?2 Cal l'i ng;
cd out.last.exp_opt = Expedited Option;
expedi ted_al | owed Expedi t ed_Opti on;
cd out.last.g_o_s = Quality_of_Service;
cd out.last.user_data = TS User Dat a;

TS Interface.isQutgoi ng_Connection_Pendi ng;
end; -- T_CONNECT.request

T_CONNECT _i ndi cati on( | nvoker : IDENTITY,
Called, Calling : ADDRESS,
Expedi ted_Option : BOOLEAN,
Qual ity of Service : QOS,
TS User Data : DATA
) is
require

| nvoker . i sPROVI DER;

TS Interface.isldle;

cd in.first.isCR

Called = cd_in.first.addressl;

Calling = cd_in.first.address2;

Expedited_Option = cd_in.first.exp_opt;

Quality _of _Service = cd_in.first.qg_o_s;

TS User Data = cd_in.first.user_data,;

deferred

ensure
cd _in.count = old cd_in.count - 1,
cd_in.enpty or else
od cd in.first /=cd_in.first;
expedi ted_al |l owed = Expedited_Option;
TS Interface.islnconm ng_Connection_Pendi ng;

end; -- T_CONNECT.indication
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T_CONNECT_response( | nvoker : IDENTITY,
Responder : ADDRESS,
Expedi ted_Option : BOOLEAN,
Quality_of _Service : QOS,
TS User _Data : DATA
) is

require
| nvoker . i SUSER;

TS Interface.islncom ng_Connecti on_Pendi ng;
not Responder. Void;
Expedited Option = fal se orese
Expedi ted_Option =
expedi ted_al | owed;
not Quality_of _Service. Void,
TS User Data. Voi d or else
(TS _User_Data.count > 0 and
TS User Dat a. count <=32);

deferred

ensure

cd out.count = old cd_out.count + 1;

cd out.last.isCC

cd _out. | ast.addressl = Responder;

cd out.last.exp_opt = Expedited Option;
expedi ted_al |l owed = Expedited_Option;
cd out.last.q_o_s = Quality_of Service;
cd out.last.user_data = TS User Dat a;
TS Interface.isData Transfer Ready;

end; -- T_CONNECT.response

T _CONNECT confirm( Invoker : IDENTITY,
Responder : ADDRESS,
Expedi ted_Option : BOOLEAN,
Qual ity _of _Service : QOS,
TS User DATA : DATA
) is
require
I nvoker . i sPROVI DER;
TS Interface.isQutgoi ng_Connection_Pendi ng;
cd_in.first.isCC
Responder = cd_in.first.addressl;
Expedited _Option = cd_in.first.exp_opt;
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Quality _of _Service = cd_in.first.qg_o_s;
TS User Data = cd_in.first.user_data,;

deferred

ensure
cd _in.count = old cd_in.count - 1,
cd_in.enpty orese
od cd_in.first /= cd_in.first;
expedited_al |l owed = Expedited _Option;
TS Interface.isData_Transfer_Ready;

end; -- T_CONNECT. confirm
T_DATA request ( | nvoker : IDENTITY,
TS User Data : DATA
) is
require

| nvoker . i SUSER;

TS Interface.isData_Transfer_ Ready;
not TS User Data. Void;

TS User _Data.count > O;

deferred

ensure
TS Interface.isData_Transfer_Ready;
dt _out.seq = old dt_out.seq + 1;
dt _out.last.content = TS User Dat a;
dt _out.last.order = dt_out. seq;
dt _out.last.tine_stanmp = tine_sent;

end; -- T_DATA request
T _DATA i ndi cati on( | nvoker : IDENTITY,
TS User Data : DATA
) is
require

| nvoker . i sPROVI DER;

TS Interface.isData_Transfer_ Ready;
not TS User Dat a. Void;

TS User _Data.count > O;

dt _in.first.order = dt_in.seq + 1,
dt _in.first.content = TS User Dat a;
dt _in.first.tine_stanp < now,

deferred
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ensure
TS Interface.isData_Transfer_Ready;

dt _in.seq = old dt_in.seq + 1;
dt _in.count = old dt_in.count - 1,
dt _in.enpty orese

dt _in.first /=old dt_in.first;

end; -- T _DATA.indication
T_EXPEDI TED_DATA request ( | nvoker : IDENTITY,
TS User Data : DATA
) is
require

expedi ted_al | owed;

| nvoker . i SUSER;

TS Interface.isData_Transfer_ Ready;
not TS User Dat a. Void;

TS User Data.count > O;

TS User Data.count <= 16;

deferred

ensure
TS Interface.isData_Transfer_Ready;
ed _out.seq = old ed_out.seq + 1;
ed out.last.content = TS User Dat a;
ed out.last.order = ed _out. seq;
ed out.last.tine_stanp = tine_sent;
ed_out.last.before_dt = dt_out.seq + 1;

end; -- T_EXPEDI TED DATA. r equest

T_EXPEDI TED _DATA i ndi cation( Invoker : IDENTITY,
TS User _Data : DATA
) is
require

expedi ted_al | owed;

| nvoker . i sPROVI DER;

TS Interface.isData_Transfer_ Ready;

not TS User Dat a. Void;

TS User _Data.count > O;

TS User Data.count <= 16;

ed in.first.order = ed_in.seq + 1;

ed in.first.content = TS User_Dat a;

ed in.first.before_dt > dt_in.seq;

ed in.first.tine_stanp < now,
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deferred

ensure
TS Interface.isData_Transfer_Ready;

ed_in.seq = old ed_in.seq + 1;
ed in.count = old ed_in.count - 1,
ed _in.enpty or€ese

ed_in.first /=old ed_in.first;

end; -- T_EXPEDI TED DATA. i ndi cati on
T_DI SCONNECT _r equest ( | nvoker : IDENTITY,
TS User Data : DATA
) is
require

| nvoker . i SUSER;
not TS Interface.isldle;
TS User Dat a. Void or else

(TS User_Data.count > 0 and
TS User Data.count <= 64);

deferred

ensure
cd_in.enpty;
dt _in.enpty;
ed_in.enpty;

TS Interface.isldle;
dt _out.count <= old dt_out.count;
ed out.count <= old ed_out.count;

cd _out.count <= old cd_out.count + 1;

cd out.l ast.isDR;

cd _out.last.user_data = TS User Dat a;

cd out.last.reason_code = TS User | nvoked;

end; -- T_DI SCONNECT. r equest

T_DI SCONNECT _i ndi cation( I nvoker : IDENTITY,
Reason : DIS REASON,
TS User _Data : DATA
) is
require
not TS I nterface.isldle;

| nvoker . i sPROVI DER;
cd_in.first.isDR;
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TS User Data = cd_in.first.user _data;
Reason = cd_in.first.reason_code;

deferred
ensure
TS Interface.isldle;
cd_in.enpty;
dt _in.enpty;
ed_in.enpty;
cd out.enpty;
dt _out.enpty;
ed out.enpty;
end; -- T_DI SCONNECT. i ndi cation

end; -- class TS I NTERFACE

deferred classTC_STATE
exporti sl dl e,
I sQut goi ng_Connecti on_Pendi ng,
i sl ncom ng_Connecti on_Pendi ng,
i sDat a_Tr ansf er _Ready
feature
i sldl e : BOOLEAN isdeferred end;
i sQut goi ng_Connecti on_Pendi ng : BOOLEAN isdeferred end;
I sl ncom ng_Connecti on_Pendi ng : BOOLEAN isdeferred end;
i sData_Transfer _Ready : BOOLEAN isdeferred end;
invariant
i sldl e orese isCQutgoing _Connection_Pendi ng
or else i sl ncom ng_Connecti on_Pendi ng or else
i sDat a_Tr ansf er _Ready;
end; -- classTC STATE
deferred class IDENTITY

export i SUSER, i sPROVI DER
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feature

i SUSER : BOOLEAN isdeferred end;

i SPROVI DER : BOOLEAN isdeferred end,;
invariant

i SUSER or else i sPROVI DER;

end; --IDENTITY

deferred class CHANNEL[T]
export first, last, count, enpty, seq
inherit TWO_WAY_LIST[T];
feature
seq : SEQ _NUM;
Zero : SEQ _NUM isdeferred end;

i nvariant
seq >= Zero;

end; --class CHANNEL

deferred class CTL_BLOCK][T]

-- A Control Block that can carry a transport connect
request, connect
-- confirm or disconnect request.

export addressl, address2, g_o_s, exp_opt, reason_code,
i sSCR, isCC, isDR user_data

inherit BI_LINKABLE[T] rename item as user _dat a;
feature
I SCR : BOOLEAN isdeferred end;

i SCC : BOOLEAN isdeferred end;
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i SDR : BOOLEAN isdeferred end;
addressl, address?2 : ADDRESS;
g_o_s : QC5;

exp_opt : BOOLEAN;
reason_code : DIS REASON;

end; -- classCTL_BLOCK

class TSDU[T]

-- A Transport Service Data Unit (TSDU), the unit of data
that a transport

-- service user (TS_USER) sents on and receives froma
transport connection

- - This is the unit that the service is responsible for
ensuring the integrity

-- of.

export order, time_stanp, content
inherit BI_LINKABLE[T] rename it em as cont ent
feature

order : SEQ NUM;

time_stanp : TIME

end; -- classTSDU

class E_TSDU[T]

- - This is an expedited transport service data unit, the
unit of expedited

-- data that the user submts to and receives froma
transport connecti on.

-- This is the unit of expedited data that the transport
service is

-- accountabl e for.
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export order, time_stanp, content, before_dt
inherit TSDUIT];
feature

before_dt : SEQ NUM,;

end; -- classE_TSDU

class DATA
export count
inherit ARRAY[CHAR];

end; -- classDATA

class DIS REASON
inherit INT;

end; -- DIS REASON
class QOS

inherit INT;

end; -- classQOS

class SEQ NUM

export infix "+", infix ">=", infix ">"

I nherit INT;

end; -- classSEQUENCE_NUMBER

class TIME

export infix ">", infix "<", infix "<=", infix ">="
inherit INT;

82



end;

classTIME

lass ADDRESS

inherit STRING;

end;

class ADDRESS
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Appendix B. Eiffel Abstract Specification of an Application Programming I nterface to the
Open Systems I nterconnection (OSI) Transport Service

deferred class TS

- - TRANSPORT _SERVI CE

-- An Eiffel representation of 1S0 8072 (the
I nternational standard

-- connection-oriented transport service
specification). The

-- description given in here omts sone of the
details of 1S0 8072.

-- The purpose of this specification is to describe
the semantics

-- of the transport service interface in a formthat
an application

-- programmer can invoke the services and conprehend
t he semantics of

-- the service calls.

exportl i sten, connect, disconnect, send, receive,
send_expedi ted, receive_expedited

feature
i sten(user : TS USER) is

-- A user invokes this feature to await a connecti on
--request from anot her transport service user.

require

val i d(user);
user . i sD sconnect ed;

deferred

ensure
user.isListening

or else
(user.isConnected and
ot her _user (user).isConnected);
end; -- listen

connect (user : TS USER, renote user : TS USER) is
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-- A transport service user invokes this feature to
at t enpt

-- to actively connect to another transport service
user.

require

val i d(user);

user. i sDi sconnect ed;

val i d(renot e_user);

renot e_user.isLi stening
or else

renot e_user. i sDi sconnect ed
or else
renot e_user.isTrying;

deferred

ensure
(user.isConnected and
renot e_user. i sConnect ed)

or ese
user.i sD sconnect ed;

end; -- connect

di sconnect (user : TS USER) is

-- A transport service user invokes this feature when
t he

-- user no longer wi shes to send data on the
transport

-- connecti on.

require
val i d(user);
user . i sConnect ed;
ot her _user (user).isConnected

or else
ot her _user (user).isDi sconnecti ng;

deferred

ensure
(user.isDi sconnected and
ot her _user (user).isDi sconnect ed)

or else
user.i sDi sconnecti ng;
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end; -- di sconnect

send(user : TS USER,tsdu : TSDU) is

-- The transport service user invokes this feature to
cause

-- a transport service data unit to be sent to a
renot e user

-- on the transport connection

require
val i d(user);
not t sdu. Void;
t sdu. content _sent.count > O;
user. i sConnect ed;

deferred

ensure
((tsdu. order_sent =
recei ve(ot her _user(user)).order_received)

and

(tsdu.tinme_sent <

recei ve(ot her _user(user)).time_received)
and

(tsdu. content _sent =

recei ve(ot her _user(user)).content _received))
or else

user. i sDi sconnect ed;

end; -- send

recei ve(user : TS USER) : TSDUis

-- A transport service user invokes this function to
receive

-- a transport service data unit froma renote user
across a

-- transport connection. |If no transport service data
units

-- are ready to receive, then the feature returns
Voi d.

require
val i d(user);
user.i sConnect ed or else user. i sDi sconnecti ng

deferred
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ensure

Resul t. Void
or else

(Result.tine_received > Result.tine_sent
and

Resul t. order_received = Result.order_sent
and

Resul t.content _received =
Resul t. content _sent)

or ese
user.i sD sconnect ed;

end; -- receive

send_expedi ted(user : TS USER, etsdu : E_TSDU) is

-- A transport service user invokes this feature to
send an expedited
-- data unit across the transport connection.

require
val i d(user);
not et sdu. Void;
et sdu. content _sent.count > O;
et sdu. content _sent. count <= 16;
user. i sConnect ed;

deferred

ensure
((etsdu. order_sent =

recei ve_expedi ted(ot her _user(user)).order_received)

and
(etsdu.tinme_sent <

recei ve_expedi ted(other _user(user)).tinme_received)
and
(etsdu. content _sent =

recei ve_expedi ted(other _user(user)).content _received)
and

(user.tsdu_sent implies
(etsdu. before_tsdu =
user.last_tsdu sent + 1)))
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or ese
user.i sD sconnect ed;

end; -- send_expedited
recei ve_expedi ted(user : TS USER) : E TSDU is

-- A transport service user invokes this feature to
recei ve an expedited

-- data unit. If no expedited data unit is
avai l abl e, then Void is

-- returned,;
require

val i d(user);
user.i sConnect ed
or else
user.i sDi sconnecti ng;

deferred
ensure
Resul t . Void
or else
(Result.tinme_received > Result.tine_sent
and
Result.order recei ved = Result. order_sent
and

Resul t.content _received =
Resul t. content _sent

and

(user.tsdu_received implies
Resul t. before tsdu >
user. |l ast _tsdu_received))

or else
user . i sDi sconnect ed;
end; -- receive_expedited
valid(user : TS USER) : BOOLEANIis
deferred
end; -- valid

ot her _user(user : TS USER) : TS USER is

require
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val i d(user);
deferred

ensure
Result /= user;
val i d(Resul t);

end; - - ot her _user
end; -- classTRANSPORT_SERVICE

deferred class TS USER
-- This represents a user of the IS 8072

connecti on-ori ent ed
- - transport service.

exporti sConnected, isListening, isDi sconnecting,
I sDi sconnected, i sTrying, |ast_tsdu_received,
| ast _tsdu_sent, tsdu_sent, tsdu_received, wakeup

feature

isTrying : BOOLEANIis

deferred
end; -- isTrying
i sConnected : BOOLEANIis
deferred
end; -- isConnected

I sListening : BOOLEANIis
deferred
end; -- isListening

I sDi sconnecting : BOOLEANIs
deferred
end; -- isDi sconnecting

i sDi sconnected : BOOLEAN s
deferred
end; -- isDisconnected

| ast _tsdu_ received : SEQ NUM;

| ast _tsdu_sent : SEQ NUM;
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tsdu_sent : BOOLEANIs
deferred
end; -- tsdu_sent

tsdu_received : BOOLEANIs
deferred
end; -- tsdu_received

wakeup(renote user : TS USER) is

-- This feature is user by the transport service
provi der to

-- indicate to the transport service user that sone
event

-- has occurred that may require the transport
user’s attention

-- This means: a renote user is trying to connect or

el se

-- sone data has arrived, or else sonme expedited

data has arrived.

deferred
end; -- wakeup

updat e_t sdu_sent is
deferred

ensure
tsdu_sent = true;

| ast _tsdu_sent = old | ast _tsdu_sent + 1;

end; -- update_tsdu_sent

updat e _tsdu_received is
deferred
ensure
t sdu_recei ved = true
| ast _tsdu_received = oldlast tsdu received + 1;

end; -- update_tsdu_received

Zero : SEQ NUMis
deferred
end;
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invariant
| ast _tsdu_sent >= Zero;
| ast _tsdu_received >= Zero;

t sdu_sent implies (1 ast_tsdu_sent > Zero);

t sdu_recei ved implies (|l ast _tsdu_received > Zero);
I sDi sconnect ed
or else
I sLi stening
or else
i sTrying
or else
i sConnect ed

or else
I sDi sconnect i ng;

end; -- classTS USER

class TSDU

-- A Transport Service Data Unit (TSDU), the unit of
data that a transport

-- service user (TS_USER) sents on and receives from
a transport connection

.-- This is the unit that the service is responsible
for ensuring the integrity

-- of.

exportorder _sent, order_received, tinme_sent,
time_received, content_sent, content received

feature
order_sent : SEQ NUM;
order _received : SEQ NUM;
time_sent : TIME;
time_received : TIME;
content _sent : DATA,
content received : DATA;
end; -- classTSDU
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classe_TSDU

Thisis an expedited transport service data unit, the unit of expedited
data that the user submits to and receives from atransport connection.
Thisisthe unit of expedited data that the transport serviceis
accountable for.

export order_sent, order_received, time_sent, time_received,
content_sent, content_received, before_tsdu

inherit TSDU;
feature
before_tsdu : SEQ_NUM;
end; -- classeE_TSDU
cl ass DATA
export count
inherit ARRAY[CHAR];
end; -- classDATA
class SEQ NUM
export infix "+", infix ">=", infix ">"
inherit INT;
end; -- classSEQUENCE_NUMBER
class TIME
exportinfix ">", infix "<", infix "<=", infix ">="
inheritINT;

end; -- classTIME
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