
Chapter 9  Task and Module Integration 

Once the modules and tasks composing a concurrent design are decided, attention

must be given to the relationships among the tasks and modules.  Modules that are not

shared among multiple tasks can be placed, logically, within the task that drives the

module, while modules shared by multiple tasks can be placed, logically, outside of any

task.  This concept of logical placement is simply a means to denote which modules are

shared by multiple tasks and which are not.  In addition, some modules must remain

outside of tasks because they serve other modules that are shared among multiple tasks.

Consideration of these issues results in the generation of a software architecture for the

evolving concurrent design.  The required knowledge is contained in the Task and

Module Integration Knowledge base, identified in Chapter 3 of this dissertation.

The Task and Module Integration Knowledge base is assigned the following

goals:  1) to determine which information hiding modules in the evolving design should

be placed inside tasks and which should be placed outside tasks, 2) to determine, for

modules placed outside tasks, the modules accessed and the specific operations invoked

by each task, 3) to determine, among the modules placed outside tasks, which modules

serve other modules and which specific operations are required by other operations, and

4)  to rectify parameter passing for modules, external to tasks, that directly access data

stores within modules internal to tasks.  To accomplish these goals, the Task and Module
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Integration Knowledge base is organized as three decision-making processes, shown in

Figure 28.  Generation of the software architecture relies upon information contained in a

fully-classified data/control flow diagram and on the state of the evolving design.  The

main information created by the Task and Module Integration Knowledge base can

include the following types of architectural relationships, as drawn from the design

meta-model defined in Chapter 5 of this dissertation:

1)  Contains (Tasks contain Modules),

2)  Accesses (Tasks access Modules), 

3)  Serves (Modules serve other Modules),

4)  Invokes (Tasks invoke Operations), and

5)  Requires (Operations require other Operations).

Design-decision rules compose each of the three decision-making processes that

lead to a software architecture.  The rules composing each process are specified below,

beginning with the process that determines module placements.

9.1  Determine Module Placements 

The placement of each IHM generated during module structuring must be

determined.1  In general, modules can be analyzed by type.  Each device-interface

module, for periodic and asynchronous devices, as well as each state-transition module

1 Note that these are decisions about logical placement, not about physical
packaging.  A module can be placed logically either inside a task or outside any task.
Placement within a task denotes that the module is accessed only by that task, while
placement outside any task denotes that the module is accessed by multiple tasks.
Decisions about physical packaging should be put off until later, when design
configuration is addressed.
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and each module that provides either user-interface or subsystem-interface services, can

be placed directly inside a task.  These types of modules are discussed below in Section

9.1.1, Captive Modules.  Other types of modules, including device-interface modules for

passive devices, as well as data-abstraction, algorithm-hiding, and function-driver

modules, discussed in Section 9.1.2 below, Shareable Modules, must be placed outside a

task when they are shared, but can be placed within a task when only one task accesses

the module.  Design-decision rules are required to recognize all of these situations.

9.1.1  Captive Modules

The CODARTS design method provides heuristics for identifying modules that

can be placed directly inside a task based on the fact that the task exists primarily to

manage the execution of the module. These include modules for asynchronous and

periodic devices, modules that contain a state-transition diagram, and modules that

provide an interface to external subsystems and to user roles.  Design-decision rules are

specified below to recognize each of these situations

9.1.1.1  Rules for Placing DIMs for Asynchronous and Periodic Devices 

One CODARTS heuristic places each DIM for an asynchronous device within the

task that handles the interrupt for that device. [Gomaa93, pp. 239-240]  Another heuristic places

each DIM for a polled device within the task that polls the device. [Gomaa93, pp. 240-242]

Each of these heuristics leads to a design-decision rule, as specified below.
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Rule: Place DIMs For Asynchronous Devices

if
IHMDIM is a device interface module and
IHMDIM  is derived from an Asynchronous Device Interface ObjectADIO and
TaskAIO is derived from Asynchronous Device Interface ObjectADIO

then
establish the design relationship TaskAIO Contains IHMDIM 

record the decision and rationale in the design history for IHMDIM

fi

An example where this rule applies can be found in the cruise control and

monitoring system case study explicated by Gomaa. [Gomaa93, Chapter 22]  In the example, a

DIM, CC Lever, and a Task, Monitor Cruise Control Lever, are established based on the

same asynchronous device interface object, Cruise Control Lever.  The rule specified

above places the DIM, CC Lever, within the Task, Monitor Cruise Control Lever.  A

similar rule is specified for periodic devices.

Rule: Place DIMs For Periodic Devices

if
IHMDIM is a device interface module and
IHMDIM  is derived from a Periodic Device Interface ObjectPDIO and
TaskPIO is derived from Periodic Device Interface ObjectPDIO

then
establish the design relationship TaskPIO Contains IHMDIM 

record the decision and rationale in the design history for IHMDIM

fi

An example where this rule applies can also be found in the case study of the

cruise control monitoring system.  In the example, two DIMs, Brake and Engine, are

created based on the existence of two periodic input device objects of the same name.  In

addition, a Task, Monitor Auto Sensors, is allocated to poll the Brake and Engine.  The
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rule specified above will place both the Brake DIM and the Engine DIM inside the Task,

Monitor Auto Sensors.

9.1.1.2  Rule for Placing State-Transition Modules

The CODARTS criteria for integrating IHMs into internal tasks note that each

state-transition module is always accessed by a single task and should, thus, be placed

inside that accessing task.  [Gomaa93, p. 234]  The following rule reflects this guidance.

Rule: Place STM

if
IHMSTM is a state transition module and
IHMSTM  is derived from a Control ObjectCO and
TaskC is derived from Control ObjectCO

then
establish the design relationship TaskC Contains IHMSTM 

record the decision and rationale in the design history for IHMSTM

fi

Two applications of this rule appear in the cruise control and monitoring system

discussed by Gomaa. [Gomaa93, Chapter 22]  In the example, two state-transition modules

(STMs) are defined, one based on the control object Cruise Control and the other based

on the control object Calibration Control.  Each of these control objects gets mapped to a

separate task: Cruise Control and Perform Calibration, respectively.  The design-decision

rule defined above places each of the state-transition modules inside the task derived

from the same control object:  the Cruise Control STM is placed inside the task Cruise

Control and the Calibration Control STM is placed inside the task Perform Calibration.
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9.1.1.3  Rules for Placing User and Subsystem Interface Modules

Two additional rules extend the CODARTS heuristic for placing DIMs for

asynchronous and polled devices to cover the cases of user-interface modules (UIMs) and

subsystem interface modules (SIMs).  Since all accesses to modules of these types will be

made within the task that drives the interface, each of these IHMs should be placed within

the task that interacts with the appropriate user-role and external subsystem.  The

corresponding design-decision rules are specified below.

Rule: Place UIM

if
IHMUIM is a user interface module and
IHMUIM  is derived from an User-Role Interface ObjectURIO and
TaskUIO is derived from User-Role Interface ObjectURIO

then
establish the design relationship TaskUIO Contains IHMUIM 

record the decision and rationale in the design history for IHMUIM

fi

An example where this rule might apply can be found in the distributed factory

automation system case study presented by Gomaa. [Gomaa93 Chapter 25]  In this example, a

task is created to drive each instance of a user-role, including Process Engineer, Process

Manager, and Factory Operator.  A corresponding UIM is defined to manage a dialog

with each user role.  Since the UIM is only accessed within the task that interacts with the

user role, each UIM is placed within the corresponding task.

A similar situation might exist in this example for an external subsystem.

Assuming that each Line Workstation Controller subsystem is self-contained and that
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such subsystems can be combined sequentially to form an assembly line, then the object,

Predecessor Workstation Interface, can be viewed as an external subsystem interface

object, this gives rise to a subsystem interface module, SIM, defined during module

structuring, and to a subsystem interface task, established during task structuring.  Since

the SIM is accessed only within the task, the SIM should be placed within the task.  The

following rule reflects this heuristic.

Rule: Place SIM

if
IHMSIM is a subsystem interface module and
IHMSIM  is derived from a Subsystem Interface ObjectSIO and
TaskSIO is derived from Subsystem Interface ObjectSIO

then
establish the design relationship TaskSIO Contains IHMSIM 

record the decision and rationale in the design history for IHMSIM

fi

This rule is not necessary for systems that assume support for distributed message

passing among tasks on different nodes in a network.  In such systems, the services

provided within a SIM are provided directly by the distributed operating system.  Since

this dissertation does not directly address designs for distributed systems, this rule

generates SIMs to encapsulate any special-purpose message passing code.

9.1.2  Shareable Modules 

The placement of function-driver modules, algorithm-hiding modules,

data-abstraction modules, and device-interface modules for passive devices depends upon

how such modules are accessed by tasks.  The fundamental criterion for placing a module
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of these types inside a task is that the module be accessed exclusively by that task.

[Gomaa93, pp. 243-244]  Whenever a module is accessed by multiple tasks, either directly or

indirectly, then the module must be placed outside any task.

When analyzing a data/control flow diagram and the related, evolving design, a

module can be recognized as being accessed exclusively by one task when that task is the

only task the sends an input to the module and either: 1) the task has a cardinality of one

or 2) the task and the module both have an equal cardinality.  The first case occurs in

situations where a single-instance task accesses either a single-instance or

multiple-instance module.  Here, the module can be placed inside the task because the

task is the sole accessor of the module.  The second case occurs when a multiple-instance

task accesses a multiple-instance module, and both the task and the module have the same

cardinality.  In this case, the module can be placed inside the task on the assumption that

each instance of the task will contain one instance of the module.  This general analysis

applies to function-driver modules, algorithm-hiding modules, and data-abstraction

modules.  The situation with device-interface modules for passive devices becomes more

complicated because sets of devices can be aggregated together with other components in

a system.  For example, each elevator in an elevator control system might be required to

have a door, a motor, and a set of lamps.  In cases such as this, the modules should be

grouped together within the same task regardless of their relative cardinalities.

Design-decision rules are specified below for each of these situations.

286



9.1.2.1  Rule for Placing Data-Abstraction Modules

Data-abstraction modules, or DAMs, can be placed based on the same criteria

used to place function-driver and algorithm-hiding modules; however, since DAMs

include data stores, the analysis applied to the data/control flow diagram and evolving

design requires consideration of a different set of details.  This requirement leads to a

separate design-decision rule for placing DAMs.  The rule is specified below.

Rule: Place DAMs 

if
IHMDAM is a data-abstraction module

then
if IHMDAM is accessed by multiple tasks
then

denote that IHMDAM is not contained within a task
else
     if the cardinality of the accessing TaskAT exceeds one but

does not equal the cardinality of IHMDAM

           then
denote that IHMDAM is not contained within a task

           else
establish the design relationship TaskAT Contains IHMDAM 

record the decision and rationale in the design history for IHMDAM

                       fi
fi  

fi

This rule applies to each DAM in an evolving design.  Access to the DAM is first

analyzed to determine if separate tasks, apart from considerations of cardinality, access

the DAM.  If so, the DAM is placed outside any task.  If only one task accesses the
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DAM, then the issue of cardinality is examined.  If the sole accessing task has a

cardinality of one or if the cardinality of the sole accessing task is identical to the

cardinality of the DAM, then the DAM is placed within the task.  In the case of

incompatible cardinalities, then the DAM is placed outside any task.

Determining if a DAM is accessed by multiple tasks becomes quite complex.

Any task in the evolving design accesses a DAM whenever one of the following

conditions exists:

The specification element(s) from which the task and the DAM derive intersect. 

The task is derived from a solid transformation in the data/control flow diagram and

either:  1) that solid transformation writes to a data store within the DAM, 2) that

solid transformation reads from a data store within the DAM, or 3) that solid

transformation updates a data store within the DAM.

Each task in the design that meets one of these conditions with respect to a given DAM is

an accessor of the DAM.  If more than one task meets one of these conditions, then the

DAM is accessed by multiple tasks.

An example where this rule detects a shared DAM can be found in the cruise

control system offered by Gomaa. [Gomaa93, Chapter 22]  In the example, a DAM, Desired

Speed, is formed from a data store, Desired Speed, and two transformations, Select

Desired Speed and Clear Desired Speed.  A task, Cruise Control, is also derived from

these two transformations; thus, the task is an accessor of the DAM, Desired Speed.

Another task, Auto Speed Control, is derived from three transformations:  Resume
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Cruising, Increase Speed, and Maintain Speed.  Although none of these three

transformations form any part of the Desired Speed DAM, two of the transformations,

Resume Cruising and Maintain Speed, do read information from the data store contained

within the DAM.  This means that the task Auto Speed Control is also an accessor of the

Desired Speed DAM.  Since Desired Speed is accessed by two tasks the DAM must be

placed outside any task.

An example where this rule detects a captive DAM can be seen in a robot

controller case study discussed by Gomaa. [Gomaa93, Chapter 23]  In this example, a DAM,

Robot Program, is formed solely from a data store of the same name.  The DAM is

accessed via a read from the transformation Interpret Program Statement.  A task,

Interpreter, is derived in part from Interpret Program Statement.  The task is the sole

accessor of Robot Program, so the DAM can be placed within the task.

9.1.2.2  Rules for Placing Remaining Information-Hiding Modules

Placement decisions regarding function-driver and algorithm-hiding modules and

device-interface modules for passive devices require four design-decision rules.  Each

rule is assigned a preference value in order to simplify the specification of the rules. By

considering each situation in turn, lower preference rules do not have to exclude

explicitly cases already recognized by higher preference rules.  The first rule, specified

below, recognizes when a relevant module is accessed by multiple tasks of different

types.
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Rule: Place Selected Shared IHMs (Second Preference)

if
IHMI is a function-driver, device-interface, or

algorithm-hiding module and
IHMI is derived from a Specification ElementSE1 and
IHMI is derived from a Specification ElementSE2   and
TaskT1 is derived from Specification ElementSE1 and
TaskT2 is derived from Specification ElementSE2 

(where TaskT1 is not TaskT2) 
then

denote that IHMI is not contained within a task
record the decision and rationale in the history for IHMI

fi

This rule considers the elements of a single module and of two different tasks.

Whenever any element or elements of the module are also elements of two separate tasks,

then the module is shared and must be placed outside of any task.  Assigning this rule

second preference achieves two objectives.  First, other rules dealing with

device-interface modules for periodic and asynchronous devices take precedence over

this rule, so only device-interface modules for passive devices remain to be allocated

when this rule becomes effective.  Second, rules with lower preference values than this

rule can be specified more simply because all cases of shared access by two different

tasks will have already been considered before the less preferred rules.

An example where this rule applies appears in the cruise control and monitoring

system as described by Gomaa. [Gomaa93, Chapter 22]  In the example, a passive device input

object, Gas Tank, is accessed from two transformations: Initialize MPG and Compute
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Average MPG.  Each of these transformations compose part of a different task: Monitor

Reset Buttons and Compute Average Mileage, respectively.  Using the rule specified

above, the DIM derived from the Gas Tank is placed outside any task.

A separate rule recognizes when a device-interface module for a passive device

belongs to an aggregation group, as specified in the input specification.  In other cases,

device-interface modules for passive devices are treated the same as algorithm-hiding and

function-driver modules; however, when a passive device belongs to an aggregation

group, issues of cardinality are ignored and the device-interface module is placed inside

the same tasks as other members in its aggregation group.  The rule to recognize these

cases is specified below.

Rule: Place DIMs For Aggregated, Passive Devices 

(Third Preference)

if
IHMDIM is a device interface module and
IHMDIM is derived from a Passive Device Interface ObjectPDIO and
(Passive Device Interface ObjectPDIO receives an Input from DeviceD

 or sends an Output to DeviceD) and
TaskC is derived from a Control ObjectCO and
IHMSTM is derived from Control ObjectCO and
TaskC contains IHMSTM and
Control ObjectCO and DeviceD are members of the same Aggregation 

Group
then

establish the design relationship TaskC Contains IHMDIM 

record the decision and rationale in the design history for IHMDIM

fi
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An example where this rule applies appears in the elevator control system case

study considered by Gomaa. [Gomaa93, Chapter 24]  In the example, each physical elevator in

the application is composed of: 1) elevator control logic (represented by the control

object, Elevator Control), 2) a motor (represented by the device, Elevator Motor), 3) a

door (represented by the device, Elevator Door), 3)  one elevator request button per floor

(represented by the device, Elevator Buttons), and 4) one elevator lamp per floor

(represented by the device, Elevator Lamps).  These elements from the data/control flow

diagram lead to the creation of several modules.  Of particular interest for the current rule

are the DIMs for the passive device input/output objects, Motor and Door, and for the

passive output device, Elevator Lamps.  Since these DIMs interface to devices that are

replicated with each elevator, the DIMs should be placed, whenever possible, within any

task that is created to drive an elevator.  The rule specified above ensures that this

placement is made.

Another rule for placing shareable modules recognizes when a relevant module is

accessed by a single, multiple-instance task that has a cardinality unequal to the

cardinality of the module.  The rule is specified below. 

Rule: Place Selected IHMs With Incompatible Cardinality (Fourth Preference)

if         IHMI is a function-driver, device-interface, 
or algorithm-hiding module and
IHMI is derived from a Specification ElementSE and
TaskT is derived from Specification ElementSE and
the cardinality of TaskT exceeds one and is not equal to the

cardinality of IHMI

then   denote that IHMI is not contained within a task
record the decision and rationale in the history for IHMI

fi
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This rule finds any multiple-instance task that accesses a relevant module and that has a

cardinality that differs from that of the module.  Situations where this rule would apply

should be extremely rare, however, the rule is included to increase the scope of situations

that are covered.  For example, this rule prevents a task with three instances from

containing an algorithm-hiding module with five instances, forcing the algorithm-hiding

module to be placed outside all accessing tasks and then shared among them.  This rule is

given fourth preference in order that the next rule can be specified simply to assume that

any remaining tasks that access a relevant module have a compatible cardinality.

The final rule that deals with the placement of shareable modules can simply

assume, by process of elimination, that any unplaced module of a relevant type is

contained by an accessing task because the cardinalities of the task and module must be

compatible, that is, either the cardinality of the accessing task is one or the cardinality of

the accessing task and the accessed module are identical.  The rule is specified below.

Rule: Place Selective Captive IHMs (Fifth Preference)

if
IHMI is a function-driver, device-interface,

or algorithm-hiding module and
IHMI is derived from a Specification ElementSE and
TaskT is derived from Specification ElementSE

then
establish the design relationship TaskT Contains IHMI 

record the decision and rationale in the design history for IHMI

fi
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An example where this rule applies can be found in the cruise control and

monitoring system presented by Gomaa. [Gomaa93, Chapter 22]  In the example, a

function-driver module, Speed Control, is formed from three transformations: Resume

Cruising, Increase Speed, and Maintain Speed.  This module is accessed solely by the

single-instance task, Auto Speed Control; thus, the Speed Control module is placed

within the Auto Speed Control task. 

9.2  Link Tasks and External Modules

After module placement decisions are completed, some modules, called external

modules, remain outside any task.  In order to determine the specific operations, provided

by external modules, that are invoked from each task, the tasks and external modules

composing the evolving design must be examined.  Any task that invokes at least one

operation in an external module can also be said to access that module.  Three rules are

defined to draw the needed inferences.  One rule links a transformation allocated to a

module contained in a task to a transformation or to directed arcs already allocated to an

operation provided by an external module.  The rule, although somewhat complicated,

identifies the two main cases where a task invokes directly an operation in an external

module, while excluding cases, dealt with in another rule, where an invocation by a task

flows from one external module to another.  One case where a task can be inferred to

invoke an operation in an external module occurs when a transformation is allocated both

to a task and to an operation in an external module.  An example of such a case appears in

the cruise control and monitoring system explained by Gomaa. [Gomaa93, Chapter 22]  In the
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example, an external data-abstraction module, Distance, provides an operation,

Determine Distance, derived from a transformation of the same name, and a task,

Determine Distance and Speed, is derived from the same transformation.  Since the

transformation Determine Distance does not receive a signal, stimulus, or control flow

from any transformation that is allocated to both the task Determine Distance and Speed

and to an external module other than Determine Distance,  the task Determine Distance

and Speed can be inferred to invoke directly the operation Determine Distance.  A

complex rule, specified below, recognizes such situations.

Rule: Invocation Via Transformation

if
IHMEM is not contained in any task and
IHMEM provides an OperationEF and
TransformationOP is allocated to TaskT and
(TransformationOP is allocated to OperationEF or
 (TransformationOP is the sink of Directed-ArcCALL and

                         Directed-ArcCALL is a Signal or Disable or Stimulus and
                         Directed-ArcCALL is allocated to OperationEF)) and

(TransformationOP does not receive a Directed-ArcOA,
 where Directed-ArcOA is a Signal or Control-Event-Flow or Stimulus,

  from a TransformationCALLER that is allocated both  to TaskT  and
 to IHMOM, where IHMOM is not IHMEM and where IHMOM is not
 contained in any task) and
TaskT does not already invoke OperationEF

then
establish the design relationship TaskT Invokes OperationEF

record the decision and rationale in the history for TaskT

if TaskT does not already access IHMEM

then establish the design relationship TaskT Accesses IHMEM

record the decision and rationale in the history for TaskT

fi
fi
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A second case where the same inference can be drawn occurs when a

transformation is allocated to a task and where that transformation receives a signal,

disable, or stimulus that is allocated to an operation in an external  module.  No example

of this second case is readily available in Gomaa’s case studies; however, the case can be

explained by making an assumption about Gomaa’s cruise control and monitoring system

case study.  Assume that the module Speed Control was placed outside any task.  The

module contains an operation, Deactivate, that is derived from three disables, where each

disable arrives at a separate transformation, Resume Speed, Increase Speed, and Maintain

Speed.  Under these assumptions, the Deactivate operation is invoked by each task.

Cases such as this are also covered by the rule.

Another rule, specified below, recognizes situations where a task invokes an

operation derived (in Chapter 8) from direct access to a data store.

Rule: Invocation Via Data Store

if
IHMANY is contained in TaskT and
TransformationDSA is allocated to IHMANY and
TransformationDSA connects via ArcA to a data store and
ArcA is allocated to OperationDSOP and
IHMDAM provides OperationDSOP and
IHMDAM is not contained in any task and
TaskT does not already invoke OperationDSOP

then
establish the design relationship TaskT Invokes OperationDSOP

record the decision and rationale in the history for TaskT

if TaskT does not already access IHMDAM

then establish the design relationship TaskT Accesses IHMDAM

record the decision and rationale in the history for TaskT

fi
fi
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An example where this rule applies can be found in Gomaa’s cruise control and

monitoring system case study.  [Gomaa93, Chapter 22]  In the example, a module, Speed

Control, is contained in the Auto Speed Control task.  Three transformations, Resume

Speed, Increase Speed, and Maintain Speed, are allocated to Speed Control.  Two of these

transformations, Resume Speed and Maintain Speed, read the desired speed by directly

accessing a data store contained within an external data-abstraction module (that is, a data

abstraction module placed outside any task).  Each of these read accesses is allocated to a

Get operation on the data-abstraction module Desired Speed; thus, the task, Auto Speed

Control, accesses the module Desired Speed and invokes the Get operation provide by the

module Desired Speed.

Another situation can occur where a task invokes an operation in an external

module that in turn passes some data to an operation in another external module.  For

example, in Gomaa’s cruise control and monitoring system case study an external

data-abstraction module, Distance, provides an operation, Compute, derived from a

transformation, Determine Distance.  Determine Distance passes a data flow, Incremental

Distance, to a transformation Determine Speed, which is the basis for an operation

Update in another external data-abstraction module, Current Speed.  This situation could

be resolved in several ways in a design.  One possibility, the one shown in Gomaa’s case

study, assigns an operation, Read Incremental Distance, to the Determine Distance

module, which the Update operation in the Current Speed module can use as required.  In

this case, both the Compute operation in the Distance module and the Update operation in
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the Current Speed module are called directly from the Determine Distance and Speed

task.  In a variant of this approach, not addressed in Gomaa’s case study, the operation

Compute in the Distance module could return Incremental Distance as a parameter when

invoked by the Determine Distance and Speed task.  The Determine Distance and Speed

task could then pass Incremental Distance as an input parameter when invoking the

Update operation in the Current Speed module.  A third approach, also not addressed in

Gomaa’s case study, has the Compute operation in the Distance module invoke the

Update operation directly in the Current Speed module, passing Incremental Distance as

an input parameter.  Rather than present the designer with multiple options, the following

rule adopts the second approach as a standard solution.

Rule: Invocation Via Parameter Matching

if
TaskANY invokes an OperationA and
TransformationS is allocated to OperationA and to IHMI and
TransformationR is allocated to OperationB (where TransformationR

is not TransformationS and OperationA is not OperationB) and to
IHMJ (where IHMJ is not IHMI) and

IHMJ is not contained in any task and
TransformationS sends an ArcDATA to TransformationR and
ArcDATA is a Stimulus or a Signal and
ArcDATA is allocated to a ParameterO yielded by OperationA and
ArcDATA is allocated to a ParameterI taken by OperationB and
TaskT does not already invoke OperationB

then
establish the design relationship TaskT Invokes OperationB

record the decision and rationale in the history for TaskT

if TaskT does not already access IHMJ

then establish the design relationship TaskT Accesses IHMJ

record the decision and rationale in the history for TaskT

fi
fi
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9.3  Link External Modules

Further analysis is required to determine when an operation provided by one

external module requires an operation provided by another external module.  In such

cases, the second external module can be said to serve the first external module in a

client-server relationship.  Two rules are defined to make the needed inferences.  One

rule, specified below, establishes when one operation requires another by recognizing

arcs that connect transformations in different external modules, where the connected

transformations are each allocated to a module operation.

Rule: Transformation Requires Transformation

if
TransformationS is allocated to IHMCLIENT and to OperationCALLING and
IHMCLIENT is not contained in any task and
TransformationR is allocated to IHMSERVER and to OperationCALLED and
IHMSERVER is not contained in any task and
IHMCLIENT is not IHMSERVER and
TransformationS is not TransformationR and
OperationCALLING is not OperationCALLED and
(TransformationS sends a ArcA to TransformationR, where ArcA is a 
 Signal, or (TransformationS  sends an ArcA to TransformationR, where 
 ArcA is a Stimulus, and TransformationR sends a Response to 
 TransformationS)) and
ArcA is allocated to OperationCALLED and
ArcA is not allocated to OperationCALLING and
OperationCALLING does not already require OperationCALLED 

then
establish the design relationship OperationCALLING Requires OperationCALLED

record the decision and rationale in the history for OperationCALLING

if IHMSERVER does not already serve IHMCLIENT

then
establish the design relationship IHMSERVER Serves IHMCLIENT

record the decision and rationale in the history for IHMSERVER

fi
fi
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An example where this rule applies appears in the cruise control and monitoring

case study provided by Gomaa. [Gomaa93, Chapter 22]  In the example, two external modules,

a device-interface module for a Gas Tank and a data-abstraction module, Average MPG,

exhibit a suitable relationship.  Two transformations, Initialize MPG and Compute MPG,

each allocated to separate operations provided by Average MPG, send the stimulus Fuel

Request to, and receive the response Fuel Level from, the transformation Gas Tank,

allocated to the device-interface module.  The rule specified above will recognize that

both the operation derived from the transformation named Initialize MPG and the

operation derived from the transformation named Compute MPG require the operation,

Get_Fuel_Level, derived from the stimulus-response pair, Fuel Request and Fuel Level.

The rule will also establish that the device-interface module, Gas Tank, serves the

data-abstraction module, Average MPG.

A separate rule is needed to recognize that an operation in one external module

requires an operation in another external module when the required operation results from

direct access to a data store.  Cases where this type of relationship exists can be found in

the cruise control and monitoring case study described by Gomaa. [Gomaa93, Chapter 22]  For

example, an external data-abstraction module, Calibration, provides two operations, Start

and Stop, that each result from transformations that read directly from a data store

contained inside another external data-abstraction module, Shaft Rotation Count.  The

direct reads of the data store indicate that both the Start operation and the Stop operation

provided by the Calibration module require the Read operation provided by the Shaft
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Rotation Count module, thus; the Shaft Rotation Count module serves the Calibration

module.  A rule to recognize and act upon such situations is specified below.

Rule: Transformation Requires Data Store

if
TransformationS is allocated to IHMCLIENT and to OperationCALLER and
IHMCLIENT is not contained in any task and
TransformationS connects to a Data Store via ArcDATA and
ArcDATA is allocated to OperationCALLED and
IHMSERVER provides OperationCALLED and
IHMSERVER is not contained in any task and
OperationCALLER does not already require OperationCALLED

then
establish the design relationship OperationCALLER Requires OperationCALLED

record the decision and rationale in the history for OperationCALLER

if IHMSERVER does not already serve IHMCLIENT

then
establish the design relationship IHMSERVER Serves IHMCLIENT

record the decision and rationale in the history for IHMSERVER

fi
fi

Another interesting situation can arise involving modules external to any task.

Suppose, the Calibration DAM, referred to in several earlier examples involving a cruise

control and monitoring system, had not been created, but that, instead, two separate

modules, Calibration Start Count and Calibration Constant are created.  This situation

arises when an experienced designer decides not to combine the two modules, or if no

experienced designer is available.  In this case, one DAM, Calibration Start Count,

consists of a transformation, Record Calibration Start, and a data store, Calibration Start

Count, while the second DAM consists of a transformation, Compute Calibration

Constant, and a data store, Calibration Constant.  During module placement, one module,
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Calibration Start Count, is placed within a task, Perform Calibration, while the other

module, Calibration Constant, is placed outside any task, because multiple tasks,

including Perform Calibration and Determine Distance and Speed, access the module.

Note that the transformation, Compute Calibration Constant, requires access to the data

from a data store, Calibration Start Count, within a module contained within a task,

Perform Calibration.  Rather than have Compute Calibration Constant access Calibration

Start Count using a direct read, a rule can be defined to rectify the parameters used by any

operation that requires data from a data store within a task so that the needed data can be

passed to the operation as an input parameter.  The necessary rule is specified below.

Rule: Operation Takes Data

if
IHMEXT is not contained within a task and
OperationOP, provided by IHMEXT, is derived from TransformationT and
IHMINT, derived from Data StoreDS, is contained within a task and
TransformationT reads data from Data StoreDS and
OperationOP Takes no appropriate input parameter

then
create and assign a name to a ParameterIN

establish the design relationship OperationOP Takes ParameterIN

record the decision and rationale in the design history for OperationOP

fi

A similar situation can occur where a write to a data store within a task can be

mapped instead to an output parameter from an operation provided by a module external

to a task.  The following rule addresses such situations.
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Rule:  Operation Yields Data

if
IHMEXT is not contained within a task and
OperationOP, provided by IHMEXT, is derived from TransformationT and
IHMINT, derived from Data StoreDS, is contained within a task and
TransformationT writes data to Data StoreDS and
OperationOP Yields no appropriate output parameter

then
create and assign a name to a ParameterOUT

establish the design relationship OperationOP Yields ParameterOUT

record the decision and rationale in the design history for OperationOP

fi
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