Appendix B. Automobile Cruise Control and Monitoring System Case Study

This appendix presents an application of the proof-of-concept prototype, CODA,
described in Chapter 10, to an automobile cruise control and monitoring system. The
specification for this system consists of a set of data/control flow diagrams, arranged
hierarchically, two state-transition diagrams, and a textual description. The specification
is taken from Gomaa.' [Gomaag3, Chapter 22] Figure 34 shows the context diagram for the
problem. The context diagram is annotated with information inferred, or elicited from the
designer, as a result of applying the prototype to anayze the specification. The
annotations are shown on the diagram, and on all subsequent data/control flow diagrams,
enclosed within square brackets and set off in italicized print. Symbols, defined in Table
31, are used with each annotation to indicate the source of the information.

The context diagram depicted in Figure 34 differs from Gomaa's context diagram
in only two ways. First, events arriving from external devices are shown in Figure 34 as
dashed, directed arcs. These events are not shown in Gomaa’s context diagram, but can
be inferred to exist from reading the accompanying textual specification. These events
must be added to the data/control flow diagram to allow CODA to make proper

inferences about the terminators. Second, some of the elements in the diagram are named

! The automobile cruise control and monitoring system is awell-known, real-time
problem that is often cited in the literature. The interested reader might wish to consult

other treatments of this problem. [Bollinger8s, Brackett87, Caromel93, Gomaad4, Hatley87, Joness9,
Jones90, Jones94, Mellor86, Sanden94, Shaw9s, Smith88]

woIsAs

BULIO1IUO Al pUB [01JUOD 8SINJD 3|ICOWOoINY J0) Welfelg 1Xe1Uo) paleiouuy ¢ ainbiH

Four Calibration Mileage
Position Push Display
Lever Buttons Panel
[Device @] [Device @] [Device @]
Cruise - / Mileage
Contro] Calibration Mileage Reset
Maintenance Lever Ion ro Input Display Push
Display Interrupt INPUt = g Data Buttons
Panel [interrupt =] [Input =] [Output =] [Device @]
[Device @] i Mileage
'\ Mileage Reset
Display
Data Input Maintenance
Input =
Dri [Output =] Automobile finput =] Reset
Srr:;fet Shaft Cruise Maintenance Push
Sensor Interrupt Control and Reset Input Buttons
= itori = Device @)
[Device @] [Interrupt =] Mongormg \[Input] [l)
_ / Brake
Engine Input
Input
p ~ [Input Brake
Engine [Input =]
S Time Fuel Throttle Sensor
ensor _ Position [Device @]
[Device @] [Input =] Amount [Output =]
[Input =] p
Digital Gas Tank Throttle
Clock Sensor Mechanism
[Device @] [Device @] [Device @]

LSy

458

differently from the names assigned by Gomaa. This renaming alows each element in

the specification to have a unique name.

Table 31. Symbols Used to Annotate Data/Control Flow Diagrams

Symbol Meaning

4 This classification is directly representable in the Specification
Meta-Modd .

@ CODA €licited this classification from the user.

= CODA made this classification.

5 CODA tentatively made a classification, but the user was asked to

' confirm or override that classification.

+ CODA €dlicited additional information from the user and then made this
classification based on that additional information.

* CODA €dlicited this information from the user.

Data/control flow diagrams for most large systems are arranged hierarchically to
help human beings better comprehend the specification. CODA, however, works from a
flattened hierarchy of data/control flow diagrams. The hierarchica form of the
data/control flow diagrams is retained in the following discussion for clarity of
exposition. Each annotated specification element that appears on a data/control flow
diagram represents a specification element that cannot be further decomposed. For

example, each terminator on the context diagram cannot be decomposed, and thus the

459

terminators exist as part of the flattened hierarchy seen by CODA. The same is true for
the directed arcs flowing to and from the terminators. Contrast these with the data
transformation, Automobile Cruise Control and Monitoring, in the context diagram. This
data transformation is not annotated because it can be decomposed on additiona
diagrams.

B.1 Analyzingthe Specification

The data/control flow diagram for this case study consists of 58 nodes (33
transformations, 12 terminators, and 13 data stores) and 112 arcs (69 data flows and 43
event/control flows). The designer invokes CODA for assistance in analyzing the
data/control flow diagram and then in generating a concurrent design.

B.1.1 Classifying the Specification

Classifying the specification requires a dialog between CODA and the designer;
however, CODA can make most classification decisions without consulting the designer.
In this case study, only two consultations are necessary. First, the designer is asked if all
terminators in the specification are devices. The designer indicates that all terminators
are devices. Second, during the latter stages of classification, CODA discovers six data
transformations that appear to be synchronous functions. Knowing the designer to be
experienced, CODA presents each of these tentative classifications to the designer for
confirmation. The designer confirms that the data transformations, Initiaize MPH,
Determine Speed, Initialize MPG, Initialize Oil Filter, Initiaize Air Filter, and Initialize

Major Service, do represent synchronous functions.

460

B.1.2 Eliciting Additional Information

Since CODA determined new semantic identities for specification elements in the
data/control flow diagram, CODA checks each specification element to determine if
additional information must be supplied by the designer. In this case study, sixteen event
flows represent timers. CODA forces the designer to provide a positive period for each
timer. The designer takes the periods from the textua description for the automobile
cruise control and monitoring system. CODA also finds two system inputs from
asynchronous devices, the cruise control lever and the shaft. CODA requires the designer
to provide avalue for amaximum rate at which these inputs are expected to arrive.

CODA discovers that no exclusion groups exist in the specification, and so, offers
the designer a chance to specify exclusion groups. The designer, after reading the textual
specification and manually analyzing the state-transition diagram, shown in Figure 35,
associated with Cruise Control, determines that Maintain Speed is enabled only in state
Cruising, Increase Speed is enabled only in state Accelerating, and Resume Cruising is
enabled only in state Resuming. The designer concludes that none of the controlled data
transformations execute simultaneously; thus, the designer specifies an exclusion group
that includes al three of the data transformations. This specification addendum helps
CODA identify instances where candidate tasks can be combined based upon mutual
exclusion.

Next, CODA determines that no aggregation groups nor locked-state events exist

within the specification and then offers the designer an opportunity to add these addenda.

[0JJu0D 8s1INJD Jo) Welfeiq uonsuel] -9rIS 'Ge aInbiq

Accel (Brake Off)

v

Engine On

Accelerating

A

Engine Off

Disable Maintain
Speed

Initial Trigger Clear Desired Speed Idle
Enable Increase Speed Engine Off >
A
Engine Off
Disable Increase Speed Engine Off
Brake Pressed
Disable Maintain]
Accel (Brake Off) < Speed
Enable Increase Speed Cruising
Brake Pressed ot < Off
A Disable Increase Speed Disable
Trigger Select Desired Speed Maintain
Speed
Resume Brake Pressed
(Brake Off) Disable Resume Cruising
Enable
Resume Off
Cruising Disable Resume Cruising
4
_ Accel _ Off
Dllzsnabkl)tla ITrc‘asrume CSrU|S|rclig Resuming Disable Resume Cruising Cruising
able Increase Spee Reached Cruising >

Accel

Disable Resume Cruising

Enable Maintain Speed

Disable Maintain Speed
Enable Increase Speed

Cruise

Disable Increase Speed
Trigger Select Desired Speed
Enable Maintain Speed

Tov

462

In this case study, the designer provides no aggregation groups and no locked-state
events. Finaly, CODA asks the designer if the cardinality of any nodes should be
atered. The designer decides not to change any cardinalities.

B.1.3 Checking Classifications and Axioms

The designer next asks that CODA check the classification and axioms for each
specification element. CODA finds that the specification is classified completely and that
all axioms are satisfied. To better understand specification anaysis for the automobile
cruise control and monitoring system, the annotated data/control flow diagrams are
presented in Figures 36 through 44.

B.1.4 Annotated Data/Control Flow Diagrams

Figure 36 shows that the application divides into two subsystems: an automobile
cruise control subsystem and an automobile monitoring subsystem. (Refer back to Table
31 to review the symbols used to annotate the data/control flow diagrams.) The directed
arcs flowing between the system and its terminators are alocated among these two
subsystems. The interface between the subsystems consists of a data flow, Cumulative
Distance, from the cruise control subsystem to the monitoring subsystem. CODA
classifies Cumulative Distance as a Retrieve, indicating that this data flow originates at a
data store within the cruise control subsystem. Since neither data transformation
representing a subsystem is annotated, additional decomposition is required.

Figure 37 shows the decomposition of the automobile cruise control subsystem

into three parts: Automobile Control (1.1), Distance and Speed Measurement (1.2), and

BuLI0]IUO N\ pUe [011U0D 8SINJID 3]IowoINYy JO uonsodwodag wesAsgns og aInbi4

N\

Lever
Interrupt
[Interrupt =]

\ Brake \

Input
[input :]\A
Automobile
Shaft .
Cruise
—— Interrupt Control
[Interrupt =] 1

Engine/v

Input

/ [Input =]

Cruise
Control
Input
[Input =]

Time

[Input =]

/

Calibration
Input
[Input =]

Throttle
Position
[Output =]

o\

Cumulative

Distance

[Retrieve =]

Mileage
Display
Data
[Output =]

Fuel
Amount

[Input =]

Automobile
Monitoring
2

Mileage
Reset
Input

[Input =]

Maintenance

[Output =]
T Maintenance
Reset
Time Input
[Input =] [Input =]

e

464

Cdlibration (1.3). At thislevel of decomposition, system inputs and outputs are allocated
more finely; for example, the Automobile Control data transformation receives four
inputs, Brake Input, Engine Input, Cruise Control Input, and Lever Interrupt, and
generates one output, Throttle Position. Thislevel of decomposition aso reveals that the
Cumulative Distance data flow originates within the Distance and Speed Measurement
data transformation. Three new data flows also appear at this level of decomposition.
CODA classifies each of these new data flows, Current Speed, Calibration Constant, and
Shaft Rotation Count, as a Retrieve. This indicates that each of these data flows
originates at a data store. None of the data transformations shown in Figure 37 is
annotated, so each can be decomposed further.

Figure 38 decomposes Automobile Control into five data transformations. CODA
classifies Brake and Engine as Periodic Device Input Objects, and classifies Throttle as a
Periodic Device Output Object. Each of these data transformations receives an event
flow, Brake Sensor Timer, Engine Sensor Timer, and Throttle Output Timer,
respectively, that CODA classifiesas a Timer. The period for each timer, 1/10 second in
each case, is dlicited from the designer. CODA classifies Cruise Control Lever as an
Asynchronous Device Input Object. Cruise Control Lever receives the event flow, Lever
Interrupt, from the terminator, Four-Position Lever. A data flow, Cruise Control Input,
arrives at a maximum rate, elicited from the designer. Figure 38 reveals five event flows
and one data flow that do not appear at higher levels in the decomposition hierarchy.

Speed Control receives two event flows, Brake Pressed and Brake Released, from Brake

weIsAsgns [041U0D as1NJD 3|IgowoINY 8y} Jo uonisodwossq /€ ainbi4

Cruise
Control
Input
[Input =]

Automobile
Control

11

Throttle
Position
[Output =]

v

— Input

/ \ Calibration Shaft

Calibration Calibration

[Input =] 1.3

/

Shaft Constant

Lever Retrieve = Rotation
Interrupt Interrupt [=1 Count
[Interrupt =] [Interrupt =] [Retrieve =]

Current
Speed
[Retrieve =]

Distance and
Speed
Measurement
1.2

Time
[Input =]

Cumulative

Distance
[Retrieve =]

v

Q9

[01U0D 3|IgowoINy Jo uonisodwossq "ge aInblq

Brake
Sensor
Timer
[Timer =]
[Period .1 secs. *]

Speed
Control
1.1.1

Brake ?r?k; \
— Input [Perioc;ic. Device Brake
[Input =] Input Object =] Pressed
P ject = [Signal :]\‘
IS Brake
Released
[Signal =]\A
N
Cruise
Ci;)ntjrtol Cruise
[in %t - Control
put= Requests

Cruise
Control
Lever
1.1.4
[Asynchronous
Device Input
Object =

[Max. Rate .5 per sec. *]
A

Lever
Interrupt
[Interrupt =]

Engine On
[Signal =]
Engine Off
[Signal =]

Current
<4— Speed

Engine
Sensor
Timer
[Timer =]
[Period .1 secs. *]

Engine
1.1.2
[Periodic Device
Input Object =]

[Retrieve =]

Throttle Value
[Stimulus =]

Throttle
1.1.5
[Periodic Device
Output Object =],

Throttle
Position
[Output =]

Engine
<4+— Input ——
[Input =]

Throttle
Output

< Timer —

[Timer =]
[Period .1 secs. *]

99

467

and two, Engine On and Engine Off, from Engine. CODA classifies each of these event
flows as a Signal. The fifth new event flow, Cruise Control Requests, originating from
Cruise Control Lever, isnot annotated in Figure 38 because the event flow is decomposed
on a subsequent diagram. The data flow, Throttle Value, received by Throttle is
classified by CODA as a Stimulus. One data transformation, Speed Control, is not
annotated because it can be decomposed further.

Speed Control is decomposed, as shown in Figure 39, into one control
transformation, five data transformations, and a data store. In addition, the event flow
named Cruise Control Requests, is decomposed into four individual event flows, Accel,
Cruise, Resume, and Off. CODA classifies each of these event flows asa Signal. CODA
also classifies the control transformation, Cruise Control, as a Control Object. Two data
transformations, Select Desired Speed and Clear Desired Speed, are classified by CODA
as Triggered Synchronous Functions. CODA classifies each of the three remaining data
transformations, Maintain Speed, Resume Cruising, and Increase Speed, as an Enabled
Periodic Function. The data store, Desired Speed, can be represented directly with the
specification meta-model; thus, no classification is required. Twelve new event flows are
revealed at this level of decomposition. CODA classifies two event flows as Triggers,
three event flows as Enables, three event flows as Disables, one event flow, Reached
Cruising, as a Signal, and three event flows, Speed Timer, Resume Timer, and Increase
Timer, as Timers. CODA €dlicits the period associated with each Timer. Four new data

flows are revealed at this level of decomposition. CODA classifies two of these as Stores

468

Select
Desired Speed

Current
rrggored |+ SPeed —
Synchronous [Retrieve =]
Function =]

Clear [Store =]

Trigger Desired
[Trigger =] Speed
1.1.1.3
\ [Triggered
Brake Synchr_onous [Store =]
\ PBraked Released Trigger unction Ve
. resse [Signal =] rigger = Current
E':)gf'f”e [Signal =] [Trigger =] Speed Desired Speed
Retrieve = Data Store #]
[Signal =] ‘/[] ' / [l 7l
) [Retrieve =]
T Erg;rl]ne Cruise Enable_ Maintain
[Signal :]\b Control "-E’:ggﬁe" Speed Speed Timer
1.1.1.1 [Disable =] 1.1.1.4 «— [Timer =]
[Control - [Enabled Periodic) [Period .2 secs. *]
Object =] Function =]

Reached Cruising ™~ Throttle
[Signal =] Value
Enable [Stimulus =f~4
[Enable =] Current __—
Speed
4 [Retrieve =]

Accel
[Signal =]

Cruise
[Signal =]

Resume

Disable

[Signal]Off [Disable =] Ees_u_me o .
ignal = ruising esume Timer)
Signal=i Enable 1.1.15 — [Timer =] [Retrieve =]
[Enable =] [Enabled Periodic/ [Period .25 secs. *]
Function =]
Disable
Cruise [Disable =]

IS

Control Throttle
Requests Value
[Stimulus =]\A

Increase

Speed Throttle
1116 Value —»
[Enabled Periodic) [Stimulus =]
Function =]

Increase Timer
[Timer =]

[Period .3 secs. *]

Figure 39. Decomposition of Speed Control

469

to adata store, Desired Speed, and the other two as Retrieves from Desired Speed.

Recall from Figure 37 that the data transformation named Distance and Speed
Measurement can be further decomposed. This decomposition, shown in Figure 40,
includes three data transformations, Shaft, Determine Distance, and Determine Speed,
and five data stores, Current Speed, Shaft Rotation Count, Last Distance, Cumulative
Distance, and Last Time. CODA classifies Shaft as an Asynchronous Device Input
Object and €licits the maximum rate of arrival for the Shaft Interrupt event flow. CODA
classifies the new event flow, Distance Timer, as a Timer, €licits the period of 1/10
second for this Timer, and classifies Determine Distance as a Periodic Function. CODA
classifies as an Update each of the two, two-way arcs that connect a data transformation
to a data store. Each of the three directed arcs flowing to a data store is classified as a
Store, while each directed arc flowing from a data store is classified as a Retrieve. The
newly revealed data flow, Incremental Distance, is classified by CODA as a Stimulus.
The remaining data transformation, Determine Speed, is classified tentatively as a
Synchronous Function and the designer is asked to confirm or override that classification.
The designer confirms the classification. The data flow named Time Request is classified
by CODA as a Stimulus and the data flow Current Timeis classified as a Response.

Another data transformation, Calibration, from Figure 37 can be decomposed
further, as shown in Figure 41. In the same way as described for earlier figures, CODA
makes the appropriate classifications for the specification elements on this diagram. This

compl etes the decomposition of the Automobile Cruise Control subsystem.

470

Shaft
Interrupt
[Iinterrupt =]
[Max. Rate 100,000
per sec. *]

Shaft

121 Last Distance
[Asynchronous
Device mput [Data Store #]
Object =]

S

[Update =]

N

[Retrieve =] [Store =]

Determine

Shaft Rotation Distance D_ﬁ:ﬁgfe
Count ——[Retrieve = 1.2.2 [Timer=]
[Data Store #] [Periodic : .
SO [Period .1 secs. *]
Function =]

Calibration
Constant
/ [Retrieve =]
[Store =]
Incremental
Distance
[Stimulus =]
\ Cumulative
Distance — [Retrieve =}»
[Retrieve =] [Data Store #]

Determine
Speed

Current Speed _ _ Last Time
[Data Store #] [Store = 1.2.3 [Upaate =] [Data Store #]
[Synchronous
Function ?]

*
Time Current
Request Time
[Stimulus =] [Response =]

Figure 40. Decomposition of Distance and Speed Measurement

471

The Automobile Monitoring subsystem is decomposed in a similar fashion,
beginning with Figure 42. The subsystem is divided into two components, Average
Mileage and Maintenance, each represented by a data transformation that can be further
decomposed. The inputs and outputs for the subsystem are divided between these two
data transformations and the data flow, Cumulative Distance, from the Automobile
Cruise Control Subsystem, is provided to both data transformations. Two new event
flows, Mileage Timer Events and Maintenance Timer Events, are revealed at this level of
decomposition. Each of these event flows can be further decomposed.

The decomposition for Average Mileageisillustrated in Figure 43. CODA makes
the following classifications for data transformations. Clock and Gas Tank are Passive
Device Input Objects; Mileage Display is a Passive Device Output Object; Mileage Reset
Buttons becomes a Periodic Device Input Object; Compute Average MPH and Compute
Average MPG are Periodic Functions. The two remaining data transformations, Initialize
MPH and Initialize MPG, are tentatively classified as Synchronous Functions and the
designer is asked to confirm or override this classification. The designer confirms the
classifications. The new event and data flows revealed in this decomposition are
classified by CODA. CODA dso €licits periods from the designer for each event flow
identified asa Timer.

The fina portion of the data/control flow diagram, shown in Figure 44,
decomposes the Maintenance data transformation from Figure 42. CODA assigns the

following classifications to data transformations in Figure 44: Maintenance Reset

uoirIqiEeD Jo uonisodwossq ‘T ainbi4

Record
Calibration Start

1.3.3
[Triggered Count
Synchronous [Retrieve =]
‘ Function =]

Shaft Rotation

Calibration Trigger
Input [Trigger 3
[Input =] [Store =]
Calibration \A
Start Calibration
Calibration [Signal =] Calibration Start Count
Buttons Control [Data Store #]
1.3.1 1.3.2
[Periodic Device)) [Control
Input Object =] Ca'éb ration Object =]
top
[Signal =] \ [Retrieve =]
f Trigger Compute
Button Poll [Trigger =] Calibration
Timer Constant
[Timer =] 1.34 Shaft Rotation

[Period .5 secs *]

[Triggered <4— Count
Synchronous [Retrieve

[Store =]
\A

Calibration Constant
[Data Store #]

.

[Retrieve =]

Ly

weisAsgns Bu 1I01IUO I\ 3]IgowoINy 8yl Jo uonisodwiodsq "z ainbiH

Time
[Input =]

Mileage
Reset
Input

[Input =]

Fuel
Amount [Retrieve =]
[Input =]

Average
Mileage
2.1

Mileage
Timer
Mileage Events
Display Data
[Output =]

Cumulative

Distance
Maintenance
[Retrieve =] Reset Input
[Input =]

Maintenance
2.2

Maintenance
Timer
Events Maintenance
/ Display Data
[Output =]

ELy

474

Time
Request
[Stimulus =]

Time
[Input

[Passive Device
Input Object =]

Time
Request
[Stimulus =]
Current
Time Tim
[Response =] Request

[Stimulus=]

MPH Timer
[Timer =]

[Period 1 secs. *]

Current
Time
[Response =]

Current
Time
[Response =]
e

Mileage

Mileage Reset Reset Buttons Bu_:_ti?ei:'oll
Input 211 —— [Timer =]
[Input =] [Periodic Device L .
Input Object =, [Period .5 secs. *]
MPH Reset MPG Reset
[Signal =] [Signal =]

Initialize MPH
212
[Synchronous

Function ?]

Initialize MPG
2.1.3
[Synchronous

Function ?]
Fuel

Level

[Response =]

Cumulative
—— Distance
[Retrieve =]

Cumulative
Distance ——
[Retrieve =]

Fuel
Request
[Stimulus =]

[Store =] [Store =]

Gas Tank

Initial Distance Initial Distance Fuel
N 2.1.6
and Time and Fuel Level [Passive Device Amount—
[Data Store #] [Data Store #] [Input =]

/ Input Object =]
Fuel

Level

[Retrieve =] [Retrieve =] [Response =]
F

uel

Request
[Stimulus =]

Compute Compute
Average . . Average MPG

MPH Cumulatlve Cumulatlve MPG Timer

Distance —— —— Distance) ., —

2.1.4 [Retrieve =] [Retrieve =] 215 [Timer =]

[Periodic - - [Periodic [Period 1 secs. *]
Function =] Function =]

Average MPH
[Stimulus =]

Average MPG
[Stimulus =]

Mileage Display
2.1.7

[Passive Device

Output Object =,

Mileage
Display Data
[Output =]

Figure 43. Decomposition of Average Mileage

475

Buttons becomes a Periodic Device Input Object; Maintenance Display becomes a
Passive Device Output Object; Check Oil Filter Maintenance, Check Air Filter
Maintenance, and Check Major Service Maintenance each become a Periodic Function.
CODA makes tentative classifications for the following Synchronous Functions:
Initialize Oil Filter, Initialize Air Filter, and Initialize Mgor Service. The designer
confirms these classifications. The newly revealed event and data flows are classified by
CODA and periods are elicited for each event flow classified asa Timer.

B.2 Generating the Design

After analyzing the data/control flow diagram, the designer decides to generate a
concurrent design, beginning with task structuring. First, the designer must load a target
environment description. For this case study, the designer chooses a DEFAULT target
environment description, including the following characteristics of note: a maximum of
two inter-task signals, a task inversion threshold of eight, support for message queues,
and no support for priority queues. The designer then asks CODA to structure tasks for

the design.

476

Maintenance

Oil Filer
Reset
[Signal =]
Initialize Oil
Filer
222
[Synchronous Cumulative
Function ?] Distance

[Retrieve :]\

[Store =]

Miles at Last Oil
Filter Maintenance
[Data Store #]

[Retrieve =] Cu_mulative
Distance

[Retrieve =]

Check Oll

Filter Maintenance OlI_FlIter
295 Timer
. [Timer =]
F[L';, 63]%7]’0:] [Period 2 secs. *]

Oll Filter Status
[Stimulus =]

Maintenance

Reset Buttons Butt_on Poll
221 Timer
[Periodic Device [Perlg [llmgrS;]c s. 4
Input Object =, : :

Major Service

Air Filer Reset
Reset [Signal =]
[Signal =]

Initialize Air Initialize Major
Filter Service
223 224
[Synchronous [Synchronous
Function ?] Function ?] .
Cumulative Cu_mulatlve
Distance Dlstgnce_
[Retrieve :]\ [Retrieve —]\

[Store =] [Store =]

Miles at Last Air
Filter Maintenance
[Data Store #]

Miles at Last
Major Service
[Data Store #]

[Retrieve =] 7 [Retrieve =] Cumulative
Cumulative Distance
Distance [Retrieve =]
[Retrieve =]

Check Major

Fiter Mamtenanch Alr Filter Service Major Servic:
226 T|mer o Maintenance T'mer
[Periodic [Timer =] 227 [Timer =]
Function =] [Period 2 secs. ”] [Periodic [Period 2 secs.
Function 3

Airl Filter Status
[Stimulus =]
Majpr Service Status

[Stimulus =]

Maintenance
Display
2.2.8
[Passive Device
Output Object =

Maintenance
Display Data
[Output =]
|

Figure 44. Decomposition of Maintenance

477

B.2.1 Structuring Tasks
For this case study, CODA makes most task structuring decisions without

consulting the designer; however, since the designer is experienced, CODA does consult
concerning one possible decision to merge two tasks. The following discussion reflects
the decision-making processes used by CODA to structure tasks.

B.2.1.1 Identifying Candidate Tasks

CODA begins by alocating candidate tasks from each of three transformations,
Increase Speed, Maintain Speed, and Resume Cruising, based on a CODARTS criterion
for identifying controlled, periodic internal tasks. Next, CODA allocates atask from each
of six transformations, Determine Distance, Compute Average MPH, Compute Average
MPG, Check Oil Filter Maintenance, Check Air Filter Maintenance, and Check Magjor
Service Maintenance, based on a CODARTS criterion for identifying periodic interna
tasks. CODA alocates two more tasks from among internal transformations, Cruise
Control and Control Calibration, based on the CODARTS criterion for identifying control
tasks. CODA's remaining alocation of candidate tasks comes from device interface
objects. CODA adllocates atask from each of six device interface objects, Brake, Engine,
Throttle, Mileage Reset Buttons, Maintenance Reset Buttons, and Calibration Buttons,
based on the CODARTS criterion for identifying periodic input/output tasks and allocates
atask from each of two device interface objects, Cruise Control Lever and Shaft, based
on the CODARTS criterion for identifying asynchronous input/output tasks. Table 32

shows CODA'’s candidate tasks at the end of this decision-making process.

Candidate Task

Table 32. Candidate Tasks Allocated by CODA

Transformation

Structuring Criterion

478

Task 1 Increase Speed Controlled Periodic Internal Task

Task 2 Maintain Speed Controlled Periodic Internal Task

Task 3 Resume Speed Controlled Periodic Internal Task

Task 4 Determine Distance Periodic Internal Task

Task 5 Compute Average MPH Periodic Internal Task

Task 6 Compute Average MPG Periodic Internal Task

Task 7 Check Air Filter Maintenance |Periodic Internal Task

Task 8 Check Oil Filter Maintenance |Periodic Internal Task

Task 9 Check Major Service Periodic Internal Task
Maintenance

Task 10 Cruise Control Control Task

Task 11 Control Calibration Control Task

Task 12 Brake Periodic Input/Output Task

Task 13 Engine Periodic Input/Output Task

Task 14 Throttle Periodic Input/Output Task

Task 15 Cdlibration Buttons Periodic Input/Output Task

Task 16 Maintenance Reset Buttons | Periodic Input/Output Task

Task 17 Mileage Reset Buttons Periodic Input/Output Task

Task 18 Cruise Control Lever Asynchronous I nput/Output Task

Task 19 Shaft Asynchronous I nput/Output Task

479

B.2.1.2 Allocating Remaining Transformations

Next, CODA examines the remaining, unallocated transformations, in an effort to
alocate them to appropriate tasks based upon CODARTS criteria for sequential and
control cohesion or upon guidance elicited from the designer. In this case, CODA needed
no guidance from the designer. Table 33 shows the decisions made by CODA during this

decision-making process.

Table 33. Additional Transformations Allocated to Tasks by CODA

Candidate Task

Transformations Added

Cohesion Criterion

Task 4 Determine Speed Sequential Cohesion
Clock Sequential Cohesion
Task 5 Clock Sequential Cohesion
Mileage Display Sequential Cohesion
Task 6 Gas Tank Sequential Cohesion
Mileage Display Sequential Cohesion
Task 7 Maintenance Display Sequential Cohesion
Task 8 Maintenance Display Sequential Cohesion
Task 9 Maintenance Dispaly Sequential Cohesion
Task 10 Select Desired Speed Control Cohesion
Clear Desired Speed Control Cohesion
Task 11 Record Calibration Start Control Cohesion
Compute Calibration Constant | Control Cohesion
Task 16 Initialize Oil Filter Sequential Cohesion
Initialize Air Filter Sequential Cohesion
Initialize Major Service Sequential Cohesion
Task 17 Initialize MPG Sequential Cohesion
Initialize MPG Sequential Cohesion
Clock Sequential Cohesion
Gas Tank Sequential Cohesion

480

B.2.1.3 Considering Task Mergers
During the next decision-making process, CODA examines the candidate tasks in
an effort to combine tasks, where feasible. CODA makes most of the decisions, shown

in Table 34, without consulting the designer.

Table 34. Tasks Combined by CODA

Tasks Combined Cohesion Criterion
Task 1
Task 2 Mutual Exclusion
Task 3
Task 5 Temporal and Functional Cohesion
Task 6
Task 7
Task 8 Temporal and Functional Cohesion
Task 9
Task 11 Sequential Cohesion
Task 15
Task 12 Temporal and Functional Cohesion
Task 13
Task 16 Temporal and Functional Cohesion
Task 17

CODA combines three tasks (1-3) based on mutual exclusion because the
constituent transformations, Increase Speed, Maintain Speed, and Resume Speed, reside
in the same exclusion group. CODA combines Task 5 and Task 6, based on Compute

Average MPH and Compute Average MPG, respectively, because both periodic internal

481

tasks operate with the same periodicity, one second. Similarly, CODA combines Task 7,
Task 8, and Task 9, based on Check Air Filter Maintenance, Check Oil Filter
Maintenance, and Check Maor Service Maintenance, respectively, because these
periodic internal tasks operate with identical periods, two seconds. CODA combines
Task 11 and Task 15, based upon Control Calibration and Calibration Buttons,
respectively, because Task 11 must always receive input from Task 15 before executing
and Task 11 interacts with no other tasks. CODA combines the Brake and Engine tasks,
Task 12 and Task 13, respectively, because these periodic input tasks operate with
identical periods, 1/10 of a second. Similarly, CODA merges the Maintenance Reset
Buttons and Mileage Reset Buttons tasks, Task 16 and Task 17, respectively, because
these periodic input tasks operate with identical periods, 1/2 of a second.

Two tasks in the evolving design might be combined because their periods are
multiples of one another, are within an order of magnitude, and are the closest such
periods existing in the evolving design. CODA cannot make a decision because
additional, application-specific, factors must be considered. After explaining this to the
designer, CODA offers an opportunity to review the structure of the tasks involved in the
decision. For this case study, the designer asks to review the tasks. CODA lists each
task, along with the transformations allocated to each task; see Table 35. CODA then
asks the designer whether to combine these tasks. In this case, the designer decides not to

combine the tasks because they do not exhibit enough functional similarity.

482

Table 35. A Candidate Task Merger

Task Transformations
Compute Average MPG
Compute Average MPH
Previously Combined Tasks 5 and 6 Gas Tank
(1 second period) Mileage Display
Clock

Check Major Service Maintenance
Previously Combined Tasks 7, 8, and 9 Check Air Filter Maintenance

(2 second period) Check Oil Filter Maintenance
Maintenance Display

B.2.1.4 Completing Task Structuring

Next, CODA considers whether the design requires any resource monitor tasks.
In this case study, no resource monitor tasks are needed. At this point, task structuring is
essentially complete; however, since CODA generates names for each task it creates, the
designer is offered an opportunity to review the task structure and to assign new names to
any task. Table 36 gives the results of the task structuring for this case study, including
the new names assigned to each task, the transformations allocated to each task, and the
structuring criteria used to make the alocations.

B.2.2 Structuring Modules

After structuring tasks, the designer might continue building the design by either
defining task interfaces or structuring modules. In this case study, the designer decidesto

structure modules first. CODA makes most of the module structuring decisions

483

Table 36. Summary of CODA’s Task Structuring Decisions

Task Transformations Structuring Criterion
Determine Speed & Determine Speed Periodic Internal Task
Distance Determine Distance Sequential Cohesion
Clock
Cruise Control Control Task
Control Cruising Select Desired Speed Control Cohesion
Clear Desired Speed
Adjust Throttle Throttle Periodic Device I/O Task
Monitor Shaft Rotation Shaft Asynchronous Device |/O

Monitor Cruise Control
Lever

Cruise Control Lever

Asynchronous Device 1/O

Increase Speed Controlled Periodic Internal
Control Auto Speed Maintain Speed Tasks

Resume Cruising Mutual Exclusion

Control Calibration Control Task

Perform Calibration

Calibration Buttons
Compute Calibration

Periodic Device I/O Task
Sequential Cohesion

Constant Control Cohesion
Record Calibration Start
Brake Periodic Device /O Tasks
Monitor Auto Sensors Engine Temporal & Functional

Cohesion

Monitor Reset Buttons

Mileage Reset Buttons
Maintenance Reset Buttons
Initialize MPH

Clock

Initialize MPG

Gas Tank

Initialize Oil Filter
Initialize Air Filter
Initialize Mg or Service

Periodic Device 1/0O Tasks

Temporal & Functional
Cohesion

Sequential Cohesion

Table 36. Summary of CODA'’s Task Structuring Decisions (cont.)

484

Task Transformations Structuring Criterion
Check Major Service Periodic Internal Tasks
Maintenance Temporal & Functiona
Check Air Filter Cohesion
Check Maintenance Need Maintenance Sequential Cohesion
Check Qil Filter
Maintenance
Maintenance Display
Compute Average MPG Periodic Internal Tasks
Compute Average MPH Temporal & Functional
Computer Average Mileage |Gas Tank Cohesion
Mileage Display Sequential Cohesion
Clock

without consulting the designer; however, since the designer is experienced, CODA

consultsin afew cases where an experienced designer might improve upon the decisions.

B.2.2.1 Identify Candidate M odules

CODA begins module structuring by considering which transformations and data

stores should form the basis for information hiding modules. CODA finds three

transformations to combine into a single State-Dependent Function-Driver Module,

eleven data structures from which to dlocate Data-Abstraction Modules, two

transformations that form

the basis for

State-Transition Modules, and tweve

transformations that lead to Device-Interface Modules. Table 37 reflects these decisions.

485

Table 37. Candidate Modules Allocated by CODA

Candidate Module

Transformation/Data Store

Structuring Criterion

Increase Speed State-Dependent,
FDM 1 Maintain Speed Function-Driver
Resume Cruising Module
DAM 1 Desired Speed Data-Abstraction Module
DAM 2 Shaft Rotation Count Data-Abstraction Module
DAM 3 Current Speed Data-Abstraction Module
DAM 4 Cumulative Distance Data-Abstraction Module
DAM 5 Initial Distance & Time Data-Abstraction Module
DAM 6 Initial Distance & Fuel Level Data-Abstraction Module
DAM 7 Miles at Last Oil Filter Data-Abstraction Module
Maintenance
DAM 8 Miles at Last Air Filter Data-Abstraction Module
Maintenance
DAM 9 Milesat Last Maor Service Data-Abstraction Module
DAM 10 Cdlibration Start Count Data-Abstraction Module
DAM 11 Calibration Constant Data-Abstraction Module
STM 1 Cruise Control State-Transition Module
STM 2 Calibration Control State-Transition Module
DIM 1 Maintenance Display Device-Interface Module
DIM 2 Mileage Display Device-Interface Module
DIM 3 Throttle Device-Interface Module
DIM 4 Clock Device-Interface Module
DIM 5 Gas Tank Device-Interface Module
DIM 6 Shaft Device-Interface Module
DIM 7 Cruise Control Lever Device-Interface Module
DIM 8 Cdlibration Buttons Device-Interface Module
DIM 9 Maintenance Reset Buttons Device-Interface Module
DIM 10 Mileage Reset Buttons Device-Interface Module
DIM 11 Brake Device-Interface Module
DIM 12 Engine Device-Interface Module

486

B.2.2.2 Allocating Functionsto DAMs

Next, CODA attempts to allocate any unallocated functions to the candidate
Data-Abstraction Modules, or DAMSs, identified in the previous decision-making process.
For this case study, sixteen functions can be allocated using CODARTS criteria for

structuring modules. Table 38 shows CODA'’s decisions.

Table 38. CODA'’s Decisionsto Allocate Functionsto DAMSs

Candidate Module

Transformations Added

Structuring Criterion

DAM 1 Clear Desired Speed DAM Update Operation
Select Desired Speed DAM Update Operation
DAM 3 Determine Speed DAM Update Operation
DAM 4 Determine Distance DAM Update Operation
DAM 5 Initialize MPH DAM Update Operation
Compute Average MPH DAM Read Operation
DAM 6 Initialize MPG DAM Update Operation
Compute Averate MPG DAM Read Operation
DAM 7 Initialize Qil Filter DAM Update Operation
Check Oil Filter Maintenance |DAM Read Operation
DAM 8 Initialize Air Filter DAM Update Operation
Check Air Filter Maintenance |DAM Read Operation
DAM 9 Initiailize Mgjor Service DAM Update Operation
Check Mgjor Service DAM Read Operation
Maintenance
DAM 10 Record Calibration Start DAM Update Operation
DAM 11 Compute Calibration Constant | DAM Update Operation

487

B.2.2.3 Allocating I solated Elements

Typically, CODA next considers allocating any transformations that remain
unallocated to some module; however, in this case study, al transformations are allocated
at this point, so CODA turns instead to examine the two data stores that remain
unalocated. First, CODA consults the designer to ensure that the isolated data stores,
Last Distance and Last Time, are used for loca memory. With this additional
information the prototype knows how to allocate the data stores. CODA allocates one
data store, Last Distance, to DAM 4 and allocates the other, Last Time, to DAM 3.
Absent an experienced designer, CODA would have reached the same decisions, by
default, for these cases.

B.2.2.4 Considering Module Subsumption

Since the designer is experienced, CODA considers whether some of the
data-abstraction modules are candidates to be combined. In this case study, the prototype
finds that the module Cumulative Distance is the only module that reads from the module
Cdlibration Constant; thus, Calibration Constant is a candidate to be subsumed by
Cumulative Distance. The designer reviews the transformations and data stores allocated
to each module and decides not to merge the two because the two modules are too
dissimilar functionaly. Next, the prototype finds that Calibration Constant is the only

module that reads from the module Start Calibration and, so, offers these as candidates to

488

be combined. After reviewing the components of each module, the designer decides to
combine them because the two exhibit a close functional relationship.

B.2.2.5 Completing Module Structuring

At this stage, the modules in the design are established and CODA considers the
operations, and associated parameters, required by each module. After mapping
transformations and arcs to module operations and parameters, CODA alows the
designer to review the module and operation structure and to assign new names. Table 39

provides a summary of CODA’s module structuring decisions for this case study.

Table 39. Summary of CODA’s Module Structuring Decisions

Module Transformation/Data Store Structuring Criterion
Increase Speed State-Dependent,
Control Auto Speed Maintain Speed Function Driver Module
Resume Cruising
Desired Speed Data-abstraction Module
Desired Speed Clear Desired Speed DAM Update Operation
Select Desired Speed
Shaft Rotation Count Shaft Rotation Count Data-abstraction Module
Current Speed Data-abstraction Module
Current Speed Determine Speed DAM Update Operation
Last Time Local Memory
Cumulative Distance Data-abstraction Module
Distance Determine Distance DAM Update Operation
Last Distance Local Memory
Initial Distance & Time Data-abstraction Module
MPH Initialize MPH DAM Update Operation
Compute Average MPH DAM Read Operation
Initial Distance & Fuel Level |Data-abstraction Module
MPG Initialize MPG DAM Update Operation
Compute Average MPG DAM Read Operation

489

Table 39. Summary of CODA’s Module Structuring Decisions (cont.)

Modules

Transformation/Data Store

Structuring Criterion

Oil Filter Maintenance

Miles at Last Qil Filter
Maintenance

Initidlize Oil Filter

Check Qil Filter Maintenance

Data-abstraction Module

DAM Update Operation
DAM Read Operation

Air Filter Maintenance

Milesat Last Air Filter
Maintenance

Initialize Air Filter

Check Air Filter Maintenance

Data-abstraction Module

DAM Update Operation
DAM Read Operation

Magjor Service Maintenance

Miles at Last Major Service

Initialize Mg or Service

Check Mgjor Service
Maintenance

Data-abstraction Module
DAM Update Operation
DAM Read Operation

Cruise Control

Cruise Control

State-transition Module

Cdlibration Control

Cdlibration Control

State-transition Module

Maintenance Display

Maintenance Display

Device-interface Module

Mileage Display Mileage Display Device-interface Module
Throttle Throttle Device-interface Module
Clock Clock Device-interface Module
Gas Tank Gas Tank Device-interface Module
Shaft Shaft Device-interface Module
CC Lever Cruise Control Lever Device-interface Module

Cadlibration Buttons

Cadlibration Buttons

Device-interface Module

Mai ntenance Reset Buttons

M aintenance Reset Buttons

Device-interface Module

Mileage Reset Buttons

Mileage Reset Buttons

Device-interface Module

Brake Brake Device-interface Module

Engine Engine Device-interface Module
Calibration Start Count Data-abstration Module

Cdlibration Calibration Constant DAM Update Operation

Record Calibration Start
Compute Calibration Constant

Multiple DAMs
Combined By Designer

490

B.2.3 Integrating Tasks and Modules

Once task and module structuring are complete, the designer decides, for this case
study, to ask CODA to integrate these two views. CODA first determines the logical
placement of the twenty-five modules, relative to the eleven tasks. Device-interface
modules for unshared devices are placed within the tasks that access the associated
device; so, for example, the Brake module and the Engine module go inside the task
named Monitor Auto Sensors and the Mileage Display module is placed inside the task
named Compute Average Mileage. Modules accessed by a single task, such as Speed
Control, which is accessed only by the task Control Auto Speed, are placed within the
accessing task, while modules accessed by multiple tasks, such as Desired Speed, Current
Speed, Clock, Gas Tank, Calibration, Distance, and Shaft Rotation Count, are placed
outside any task.

After establishing module placement, CODA identifies cases where tasks invoke
operations within modules that reside outside any task. In each such case, CODA
establishes an Invokes relationship between the task and the operation. Additionaly,
CODA creates an Accesses relationship between a task and each module that provides
operations invoked by that task. For example, the task named Determine Distance and
Speed accesses two modules: 1) Distance, invoking the operation Update, and 2) Current
Speed, invoking the operation Update.

Once the relationships between tasks and module are determined completely,
CODA examines possible connections between modules residing outside any task.

Where an operation in one such module invokes an operation in another such module,

491

CODA establishes a relationship stating that the invoking operation requires the invoked
operation. For each module that provides operations required by another module, CODA
creates a relationship indicating that the providing module serves the requiring module.
For example, in this case study, an operation, Select, of the module Desired Speed,
requires another operation, Read, provided by the module Current Speed. Current Speed,
then, serves Desired Speed.

B.2.4 Defining Task Interfaces

All that remains to complete the design is the definition of task interfaces. At the
designer’'s request, CODA begins this process.

B.2.4.1 Allocating External Task Interfaces

First, CODA determines the externa interfaces for each task. At this point,
CODA allocates data read and written by each task, determines timers and interrupts
received by each task, and identifies the set of data and event flows exchanged among

tasks. The details of these mappings are shown in Tables 40-44.

Table40. CODA’sAllocation of Input Data Flowsto Tasks

492

Task Input Data Flow
Compute Average Mileage Fuel Amount

Time of Day
Determine Speed and Distance Time of Day
Monitor Auto Sensors Brake Input

Engine Input
Monitor Cruise Control Lever Cruise Control Input
Monitor Reset Buttons Fuel Amount

Maintenance Reset Input
Mileage Reset Input
Time of Day

Perform Calibration

Cdlibration Input

Table41. CODA’sAllocation of Output Data Flowsto Tasks

Task

Output Data Flow

Adjust Throttle

Throttle Position

Check Maintenance Need

Maintenance Display Data

Compute Average Mileage

Mileage Display Data

Table42. CODA’sAllocation of Interruptsto Tasks

Task

Interrupt

Monitor Cruise Control Lever

Lever Interrupt

Monitor Shaft Rotation

Shaft Interrupt

493

Table43. CODA’sAllocation of Timersto Tasks

Task

Timer

Adjust Throttle

Throttle Output Timer

Air Filter Timer

Check Maintenance Need Major Service Timer
Oil Filter Timer
Compute Average Mileage MPG Timer
MPH Timer

Control Auto Speed

Speed Timer

Increase Timer
Resume Timer

Determine Speed and Distance

Distance Timer

Monitor Auto Sensor

Brake Sensor Timer
Engine Sensor Timer

Monitor Reset Buttons

Button Poll Timer

Perform Calibration

Button Poll Timer

Table44. Inter-Task Exchangesldentified by CODA

Destination Task

Sour ce Task

Internal Data/Event Flow

Adjust Throttle

Control Auto Speed

Throttle Value (3 instances)

Control Auto Speed

Cruise Control

E/D Increase Speed
E/D Maintain Speed
E/D Resume Speed

Control Cruising

Control Auto Speed

Reached Cruising

Monitor Cruise Control Lever

Accel
Cruise
Off
Resume

Monitor Auto Sensors

Brake Pressed/Rel eased
Engine On/Off

494

B.2.4.2 Allocating Control and Event Flows

Next, CODA considers how event flows between pairs of tasks might be
allocated. CODA adlocates event flows from the Monitor Auto Sensors and Monitor
Cruise Control Lever tasks to queued messages. These events flow into a state-transition
diagram and, thus, none should be missed and their arrival order should be preserved. In
addition, the two input tasks that generate these events should not be delayed waiting for
the Control Cruising task to accept the events.

CODA maps all control flows from the Control Cruising task to the Control Auto
Speed task onto a single, tightly-coupled message. CODA makes this mapping because
the Enable and Disable signals are assumed to be transmitted during a state-transition,
and thus the sending task requires synchronization with the task receiving these control
flows.

CODA s less certain how to map the event, Reached Cruising, that flows from
the task Control Auto Speed to the task Control Cruising. In general, this decision
depends upon whether the sender of the event needs to synchronize with the receiver of
the event. CODA cannot determine if this is the case, and so, had the designer been
inexperienced, then CODA would make a default decision to allocate this event to a
gueued message. For this case study, however, CODA consults the experienced designer.
CODA asks the designer whether synchronization is required for this event. In this case,
the designer says synchronization is not required, so CODA maps the event onto a

gueued message.

495

B.2.4.3 Allocating Data Flows

After deciding how to map all the events that flow between tasks, CODA next
considers how to map all the data flows between pairs of tasks. In this case study, only
three data flows, al instances of Throttle Value, to the Throttle must be considered.
CODA, uncertain about the synchronization requirements for these data flows, consults
the experienced designer for additional information. The designer indicates that the
sender and receiver must rendezvous around these data flows; CODA then maps al three
data flows to a single, tightly-coupled message from the task Speed Control to the task
Adjust Throttle. Had an experienced designer been unavailable then, by default, CODA
would map these three data flows to a single, queued message.

B.2.4.4 Eliciting Message Priorities and Defining Queue I nterfaces

Next, CODA recognizes that one task, Cruise Control, receives queued messages
from multiple source tasks. Since the designer is experienced, CODA offers the designer
an opportunity to assign varying priorities to these messages. In this case study, the
designer declines the offer. CODA then examines the facilities available in the intended
target environment and defines appropriate mechanisms for holding queued messages.
Since the target environment provides message queuing services and since tasks
exchange queued messages at a single priority, CODA allocates a first-in, first-out

message queue for each task that receives queued messages.

496

B.2.4.5 Completing Task-Interface Definition

After defining queue interfaces, CODA offers the designer a chance to review the
new design elements created during task-interface definition. In this case study, the
designer accepts the offer and commences the review. For each task, CODA displays
only the incoming interfaces, except that CODA displays each datum output with the task
that generates that output. This approach ensures that the designer reviews each element
only once.

B.2.5 The Completed Design

At this point, the design is complete. Configuring the design and evaluating the
performance of the design go beyond the scope of the prototype implemented for this
dissertation. CODA can, however, generate specifications and design histories for each
task and module in the design. In addition, CODA can check the design for completeness
against the elements from the data/control flow diagram, and also for consistency with
the design meta-model.

B.2.5.1 Creating the Software Architecture Diagram

When the designer requests that the design be written, CODA constructs a
specification and design history for each task and module. The design histories are too
long, and the task and modul e specifications too numerous, to include in this already long
exposition. Instead, Figure 45 reproduces one task behavior specification, for the task
Perform Calibration, and Figure 46 shows one module specification, for the module

Cdlibration. The designer can use the task and module specifications to create a

497

TASK: Perform_Calibration

A) TASK INTERFACE:
TASK INPUTS:
Event Inputs:
1) Timer_Expiration (Timer event) from Run-Time_System
every 0.5 secs.
Data Inputs:
1) Calibration_Input from Calibration_Push_Buttons
TASK OUTPUTS:
MODULES ACCESSED:
1) Cdlibration
Invokes Start
Invokes Stop
MODULES CONTAINED:
1) Cdlibration_Buttons
2) Calibration_Control

B) TASK STRUCTURE:

Criteria: Periodic Device I/O Task
Control Task
Control Cohesion
Sequential Cohesion

Transformations; 1.3.2 Calibration_Control
1.3.1 Calibration_Buttons
1.3.4 Compute_Calibration_Constant
1.3.3 Record_Calibration_Start

C) TIMING CHARACTERISTICS:
Activation: Periodic - by timer every 0.5 secs.
Execution Time Ci:

D) CONFIGURATION INFORMATION:
Cardinality: 1

Priority: 1

Processor: 1

E) TASK EVENT SEQUENCING:

F) ERRORS DETECTED:

Figure 45. Task Behavior Specification for Perform Calibration

498

MODULE: Cdlibration

A) MODULE LINKAGES:

Accessing Tasks. Perform_Calibration
Modules Served: Distance

B) MODULE STRUCTURE:
Criteriac Data-Abstraction Module
Update Operation Of A Data-Abstraction Module
Multiple, Data-Abstraction Modules Combined by Designer

Transformations: 1.3.3 Record Calibration Start
1.3.4 Compute_Calibration_Constant

Data Stores: Calibration_Start Count
Calibration_Constant

C) ASSUMPTIONS:
This Module Supports Shared Access By Multiple Tasks

D) OPERATIONS PROVIDED:
1) Read Constant
Output Parameter: Calibration Constant
2) Start
Operation Required: Shaft_Rotation_Count.Read
3) Stop
Operation Required: Shaft_Rotation_Count.Read

Figure 46. Module Specification for Calibration

499

diagrammatic representation of the design. A two part figure, shown as Figures 47 and
48, gives such a representation of the concurrent design created for this case study. The
task and module specifications exhibited in Figure 45 and Figure 46 are used below to
show how a designer can map from the specifications to a diagram. The notation used in
Figures 47 and 48 is explained in Chapter 5 of this dissertation.

Figure 47 illustrates diagrammatically the concurrent design, as generated by
CODA, for the cruise control subsystem. The task behavior specification in Figure 45
applies to the Perform Calibration task, depicted in the upper portion of Figure 47, just to
the right of center. The module specification in Figure 46 applies to the Calibration
module, shown in Figure 47, just to the southeast of the Perform Calibration task. As
revealed in the task behavior specification, Perform Calibration receives a timer event,
Timer Expiration, and reads one input, Calibration Input. The task produces no direct
outputs. The task does, however, access the Calibration module, invoking two
operations, Start and Stop. The task also contains two modules, Calibration Control and
Cdlibration Buttons. This information is represented pictorialy in Figure 47. The task
behavior specification includes additional information not shown on the diagram. For
example, the timer period is 1/2 second and the task is a periodic device-i/o task, formed
from four transformations based on three task-structuring criteria.

As revealed in the module specification, the Calibration module is accessed by
one task, Perform Calibration, which uses the two operations, Start and Stop, and serves

one module, Distance, which accesses the operation named Read Constant. This

500

uoneldx3
Jawily

paads
pue

[aouelsiq
Aeq jo swiL aulwaleg

soueIsiq

paads juaund

uonisod amoIyL

——

uoneldx3 sawiy
amoJyL

amouy L isnlpy

peay
A

Junod
uoneloy Yeys

1dnuau|
yeys

=

uoneI0Y eYS JoNUON

A 4
awiL
waund

1sanbay
amouyL isnlpy

AN:oz@:axm Jawi) asealdu|
AN uoneudx3 Jawil swnsay

uonesdx3 Jawil ureyurey

peay

azijenul

ndu
jonuoD asinId

paads oiny |onuod Buisiniy

010

JUBISU0D
peay

uoneiqied

suonng

psads palisaq

Jjonuod

voneiqeO UONBIGNED 4—0> =yl

payoeay uang

JEVER Kole)

18737 DD

puewwo)
paads

jonuod
ESiVle)

1dnusiu| Jana

18/ |013U0D BSINID I0}UOWN

suang
|o4uo) asinD
Buisinip [onuod induj ayelg
Juang
10SUaS 01Ny
ndu
uonelqied

induj suibuzy
auibug

oxelg

I

uoneundx3 S10suss 01Ny JONUOW

uopeIqIeD wiopad JENTR

esign

itoring System D

(Part One of Two)

Figure 47. Automobile Cruise Control and Mon

501

azieniu|

uel se

abelany
andwod

azirenul

OdN

ereq Aejdsia
abeaIn

Aeydsig
abea|IN

abea|in abesany aindwod

azieniu|

T
wauny
pesay

abelany
andwod

azirenul aziemu|

HdA

Junowy [an4

Aeq jo awil

uoneldx3 JawiL

aouelsIq

snjeis sneis sneys
393Yd %934d %934d

aziremul azienu|

aoueudURN aourUAUERN aourUAUE
194 'O

30IM9S Jofey 19|i4 4

ereq Aejdsia

aoueULUEN ndu| 19say aoueudjue

Aejdsia
aoueualureN

ndu| 19say abesin

uonesdx3 Jawil uoneldx3 Jawil

paaN 9ouBRUSIUIRA %08UD

suonng jesay J0)JUON

Figure 48. Automobile Cruise Control and Monitoring System Design
(Part Two of Two)

502

information, and the fact that the module is accessible from multiple threads of control,
can be determined from reviewing the software architecture diagram, Figure 47. The
module specification includes information not shown in Figure 47. For example, the
module is formed from two data transformations and two data stores, based on three
module-structuring criteria. In addition, one operation, Read Constant, returns a
parameter, Calibration Constant.

The foregoing discussion should convince the reader that the contents of the
software architecture diagram can be derived from the task behavior specifications and
modul e specifications produced by CODA. In fact, the author derived Figures 47 and 48
using exactly that method.

Figure 48 depicts the software architecture for the monitoring subsystem. Two
modules, Clock and Distance, appear on both Figures 47 and 48. Each of these modules
is accessed by tasks from both subsystems. Replicating the modules on both figures
provides a convenient means of viewing the design.

B.2.5.2 Assessing the Design

The concurrent design depicted in Figures 47 and 48 is almost identical to the
design given by Gomaa for the automobile cruise control and monitoring system. [Gomaag3,
Chapter 221 Two main differences can be discerned. First, one module, Clock, that appears
in Figures 47 and 48 does not appear in Gomaa's design because Gomaa assumes a clock
function is built into the operating environment. The time-of-day clock used in the

data/control flow diagrams depicted earlier in this appendix is represented as an external

503

device; thus, CODA dllocates a module to interface to that device. A second, more
subtle, difference involves interactions between a task, Determine Distance and Speed,
and two modules, Distance and Current Speed. In Gomaa's design, Determine Distance
and Speed calls the Update operation in the Distance module and then the Update
operation in the Current Speed module, just as shown in Figure 47. However, in Gomaa's
solution, the Update operation in the Current Speed module invokes another operation,
Read Incremental Distance, in the Distance module to obtain some information needed to
compute the current speed. In the design generated by CODA, Determine Distance and
Speed first invokes the Update operation in the Distance module. The update operation
returns an output parameter, Incremental Distance, that is passed, by Determine Distance
and Speed, as an input parameter to the Update operation in the Current Speed module.
This difference between CODA'’s design and Gomaa's design results from the fact that
CODA adopts asingle strategy for mapping calls from tasks to modules, whereas, Gomaa
uses arange of different strategies to perform these mappings.

B.3 Design Generated for a Novice Designer

To demonstrate design generation for a novice designer, CODA generates a
second design for the automobile cruise control and monitoring system. The starting
point for this design is the output from CODA'’s specification analyzer. This means that
the input data/control flow diagram is identical to that used to generate the previous
design, that is, the specification is fully classified, the axioms are satisfied, the timer

values are identical, and the specification addenda are the same.

504

B.3.1 Generating the Design

In general, CODA moves through the same design-generation steps described
previously in section B.2; however, in cases where an experienced designer was
consulted, CODA now makes default decisions. The first such case occurs when CODA
considers task mergers. Previoudly, two internal periodic tasks, one with a period of one
second and another with a period of two seconds, were referred to the designer to
consider combining them based on temporal and functional cohesion. For a novice
designer, CODA simply refuses to consider such decisions; thus, by default, CODA does
not combine the tasks in question (refer back to Table 35). Since, for the previous design,
the experienced designer chose not to combine these tasks, CODA generates an identical
result in each case.

Two other relevant cases appear during module structuring. First, CODA
previously consulted the experienced designer regarding two isolated data stores, Last
Distance and Last Time (refer back to section B.2.2.3). For a novice designer, CODA
takes a default decision that these data stores provide local storage and then allocates
these data stores to existing modules. Since, for the previous design, the experienced
designer indicated that these data stores provide local storage, CODA generates an
identical result in each case. A different outcome occurs with regard to module
subsumption.

Previously, CODA consulted with the experienced designer regarding two cases

where data-abstraction modules might be combined (refer back to section B.2.2.4). When

505

only a novice designer is available, CODA refuses to consider such complex cases; thus,
by default, CODA does not combine modules. Since, for the previous design, an
experienced designer chose to combine two modules, CODA generates a different result
for the novice designer. This difference leads to other differences, as explained later,
regarding module placement and module calling sequences.

Only two other instances arise where CODA wishes to consult an experienced
designer. In one instance (refer back to section B.2.4.2), CODA desires to know the
synchronization requirements for an event flow, Reached Cruising. Since the designer is
a novice, CODA takes a default decision to map this event flow to a queued message.
This decision agrees with the guidance provided by the designer in the previous design.
In the other instance (refer back to section B.2.4.3), CODA wishes to know the
synchronization requirements for three data flows, Throttle Value. Again, since the
designer is a novice, CODA takes a default decision to map these data flows to a queued
message. This decision differs from the guidance provided by the designer in the
previous design.

B.3.2 The Completed Design

Figures 49 and 50 depict the design, generated by CODA for a novice designer.
Figure 49 gives the design for the cruise control subsystem. Only minor differences exist
between this solution and the solution generated with the assistance of an experienced
designer (see Figure 47). One difference appears at the interface between the Control

Auto Speed task and the Adjust Throttle task. In the previous design, the designer

506

uonendx3y
Jawi]

paads
pue

|v aouelsig

Aeq jo awiL

1dnua|
Yeys

I~

aulwialeg

aouelsig

uomisod amoIyL

——

uonendx3 sawi
amoJyL

paads alnd amouy L Isnipy

Im% dn
P s)sanbay

amoiy1 1snipy
peay
A

AN uoneldx3 JawiL aseasdu|

AN uofelidx3 Jawi] swnsay

uonesdx3 JawiL ureyureiy

lonuo)
paads

unod
uoneloy yeys

yeus

nduy

paads o j0auod 01U0D BSINID

Buisiniy

ang
JEVER Kole}

payoeay

puewwo)
paads

psads paiisaq

19737 DD

1dnusiu| Jana

19AST [04UOD BSINID JOHUON

|jonuod
asinIo

Suang

n.
eisuod |0uo) 8sinID

uoneiqied

Buisini) jonuod

nduj axelg

ang
10SUBS oIy

suonng

nduy
oneiqied

uoneiqied

nduj suibug

aulbug exeig

unoo uels |oluod

uoneiqied oneiqied [«

uopesdx3

/e

uoireldx3 Jawi |

SI0SUSS 0Ny JO}HUOW

uonel0y Yeys JONUoW

uoneiqied wiopsd Jawil

Figure 49. Cruise Control Subsystem Design - Novice Designer

507

swil
jusund
peay

Suel seg

aouelsia

sneis sneis
3o8yd 08YyD

azifenu] azifenu]

abelany abelany sneis
andwod andwod 328yDd

azifenu] azifenu] azifenu]

sourUBURI souBUBIUE soueUBUR
201M19S JofelN ISIERI IDENe}

<\

junowy [an4

OdN HdA

i

Junowy [an4

ereq Aeidsig
abean

ereq Aeidsig

nduj jJ9say aoueualue
Aeq jo awi] aoueuUBURN nauj 1essy ureiy

Aejdsia
aoueualureN

suonng suonng ndu| 18say abesin
19s8y 1959y
Aeqjo awiL " poueusiueN speany

uoneldx3 JawiL uoneldx3 Jawil uoneldx3 Jawi L

abeajin abesany andwo Pa9N SoURUBIUIBIA 308UD suonng 1esay JoNUON

Figure 50. Monitoring Subsystem Design - Novice Designer

508

informed CODA that this message interface requires synchronization. Without such
information, CODA generates a queued message interface by default. The other
differences result from CODA's inability to determine that the Calibration Start Count
and the Calibration Constant should be combined into a single data-abstraction module.
For the previous design, the experienced designer advised CODA to combine the two
modules. Without help from an experienced designer, CODA opts to leave the two
modules separate. Asaresult, CODA places one of the modules, Calibration Start Count,
inside of the Perform Calibration task and also shows an invocation from that task to the
Read operation of the Shaft Rotation Count module. As a secondary effect, CODA
assigns only two operations to the other module, Calibration Constant. For the remainder
of the cruise-control subsystem design that CODA generates for the novice designer, the
results appear identical to those generated by CODA with help from an experienced
designer.

Figure 50 shows the design for the monitoring subsystem, as generated by CODA
for a novice designer. No difference can be found between this design and the
comparable design generated by CODA with help from an experienced designer (see

Figure 48).

